TÌm min: \(A=13x^2+y^2+4xy-2y-16x+2017\)
Tìm giá trị nhỏ nhất của biểu thức:
\(A=13x^2+y^2+4xy-2y-16x+2015\)
\(A=13x^2+y^2+4xy-2y-16x+2015\)
\(A=\left(4x^2-4x+1\right)+2y\left(2x-1\right)+y^2+\left(9x^2-12x+4\right)+2010\)
\(A=\left(2x-1\right)^2+2y\left(2x-1\right)+y^2+\left(3x-2\right)^2+2010\)
\(A=\left(2x-1+y\right)^2+\left(3x-2\right)^2+2010\)
Đến đây bạn tự làm nốt nhé~
không làm được thì ib
Tìm GTNN của các biểu thức sau :
a, a^2 + ab +b^2 -3a -3b +2012
b, 13x^2 +y^2 +4xy -2y -16x +2015
c, (y -1 )^2 +(x -2 )^2 +(x+y+1)^2 +2016
Câu 1: Tìm GTNN của A= 13x3 + y2 + 4xy - 2y - 16x + 2015
Câu 2: Cho a+b = 1. Chứng minh: a3 + b3 +ab >= 1/2
câu 2: gọi biểu thức là A đi
\(A=\left(a+b\right)\left(a^2-ab+b^2\right)+ab=1.\left[\left(a+b\right)^2-3ab\right]+ab=\left(a+b\right)^2-2ab=1-2ab\)
\(\left(a-b\right)^2\ge0\Rightarrow a^2+b^2\ge2ab\Rightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow ab\le\frac{1}{4}\)(chỗ 4ab là cộng 2 vế với 2ab đó)
\(\Leftrightarrow-ab\ge\frac{-1}{4}\Leftrightarrow-2ab\ge-\frac{1}{2}\Rightarrow1-2ab\ge\frac{1}{2}\Rightarrow A\ge\frac{1}{2}\Rightarrowđpcm\)
tìm giá trị lớn nhát cửa biểu thức;
A=X^2+5Y^2-4xy+6x-14y+15
B=13x^2+y^2+4xy-2y-16x+2015
tìm giá trị nguyên của n để :
n^4-5n^3-3n^2+17n-17 chia hết cho n-5
Tìm giá trị nhỏ nhất của:
13x2 + y2 - 4xy - 16x + 2y + 2022
\(13x^2+y^2-4xy-16x+2y+2022\)
\(=\left(y-2x\right)^2+2\left(y-2x\right).1+1+9x^2-12x+4+2017\)
\(=\left(y-2x+1\right)^2+\left(3x-2\right)^2+2017\)
Vậy: Min là 2017 khi \(x=\dfrac{2}{3};y=\dfrac{1}{3}\)
tìm giá trị nho nhất của:
A= 13x2 +y2 +4xy-2y-16x+2016
các bạn giúp mình với
Trần công Chánh | hs tích cực |
Lê Thị Hồng Thêm | hs chuyên cần |
Phan Thị Thùy Ngân | hs siêng năng |
Cho x,y,z là các số nguyên dương .
Thỏa mãn \(12x^2+11y^2+3z^2+16x+8y+7=4xy+8xz+36yz+24z\)
Tìm Min A=x-2y+3z
a) Tìm giá trị nhỏ nhất của biểu thức :
A=13x2+y2+4xy-2y-16x+2015
b) Cho 2 số a,b thỏa mãn điều kiện a+b=1 ,CMR a3+b3+ab luôn lớn hơn hoặc bằng 1/2
Tim Min
a ) 2x^2 - 4xy + 4y^2 - 6x
b) z^2 - 4z t + 5t ^2 - 2t + 13
c) 16x^2 - 8x+y^2 - 2y
a, \(2x^2-4xy+4y^2-6x\)
\(=x^2-2xy-2xy+4y^2+x^2-3x-3x+9-9\)
\(=\left(x-2y\right)^2+\left(x-3\right)^2-9\)
Với mọi giá trị của \(x;y\in R\) ta có:
\(\left(x-2y\right)^2+\left(x-3\right)^2-9\ge-9\)
Để \(\left(x-2y\right)^2+\left(x-3\right)^2-9=-9\) thì
\(\left\{{}\begin{matrix}\left(x-2y\right)^2=0\\\left(x-3\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3-2y=0\\x=3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=1,5\\x=3\end{matrix}\right.\)
Vậy..............
b, \(z^2-4zt+5t^2-2t+13\)
\(=z^2-2zt-2zt+4t^2+t^2-t-t+1+12\)
\(=\left(z-2t\right)^2+\left(t-1\right)^2+12\)
Với mọi giá trị của \(z;t\in R\) ta có:
\(\left(z-2t\right)^2+\left(t-1\right)^2+12\ge12\)
Để \(\left(z-2t\right)^2+\left(t-1\right)^2+12=12\) thì
\(\left\{{}\begin{matrix}\left(z-2t\right)^2=0\\\left(t-1\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}z-2=0\\t=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}z=2\\t=1\end{matrix}\right.\)
Vậy...............
Câu c tường tự !!!
a,Đặt A= \(2x^2-4xy+4y^2-6x\)
\(=\left(2x^2-4xy-6x\right)+4y^2\)
\(=2\left(x^2-2xy-3x\right)+4y^2\)
\(=2\left[x^2-2x\left(y+\dfrac{3}{2}\right)+\left(y+\dfrac{3}{2}\right)^2\right]+4y^2-\left(y+\dfrac{3}{2}\right)^2\)
\(=2\left(x-y-\dfrac{3}{2}\right)^2+4y^2-y^2-3y-\dfrac{9}{4}\)
\(=2\left(x-y-\dfrac{3}{2}\right)^2+3\left(y^2-y+\dfrac{1}{4}\right)-3\)
\(=2\left(x-y-\dfrac{3}{2}\right)^2+3\left(y-\dfrac{1}{2}\right)^2-3\)
Với mọi giá trị của x;y ta có:
\(\left(x-y-\dfrac{3}{2}\right)^2\ge0;\left(y-\dfrac{1}{2}\right)^2\ge0\)
\(\Rightarrow2\left(x-y-\dfrac{3}{2}\right)^2+\left(y-\dfrac{1}{2}\right)^2-3\ge-3\)
Vậy Min A = -3 khi \(\left\{{}\begin{matrix}x-y-\dfrac{3}{2}=0\\y-\dfrac{1}{2}=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-\dfrac{1}{2}-\dfrac{3}{2}=0\\y=\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-2=0\\y=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)
b, Đặt B = \(z^2-4zt+5t^2-2t+13\)
\(=\left(z^2-4zt+4t^2\right)+\left(t^2-2t+1\right)+12\)
\(=\left(z-2t\right)^2+\left(t-1\right)^2+12\)
Với mọi giá trị của z;t ta có:
\(\left(z-2t\right)^2\ge0;\left(t-1\right)^2\ge0\)
\(\Rightarrow\left(z-2t\right)^2+\left(t-1\right)^2+12\ge12\)
Vậy Min B = 12 khi \(\left\{{}\begin{matrix}z-2t=0\\t-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}z-2=0\\t=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}z=2\\t=1\end{matrix}\right.\)
c, Đặt C = \(16x^2-8x+y^2-2y\)
\(=\left(16x^2-8x+1\right)+\left(y^2-2y+1\right)-2\)
\(=\left(4x-1\right)^2+\left(y-1\right)^2-2\)
Với mọi giá trị x;y ta có:
\(\left(4x-1\right)^2\ge0;\left(y-1\right)^2\ge0\)
\(\Rightarrow\left(4x-1\right)^2+\left(y-1\right)^2-2\ge-2\)
Vậy Min C = -2 khi \(\left\{{}\begin{matrix}4x-1=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x=1\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{4}\\y=1\end{matrix}\right.\)