Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Minh Dương
Xem chi tiết
boi đz
29 tháng 6 2023 lúc 17:14

0\(a.S=1-5+5^2-5^3+...+5^{98}-5^{99}\\ 5S=5-5^2+5^3-5^4+.....+5^{99}-5^{100}\\ 5S+S=\left(5-5^2+5^3-5^4+.....+5^{99}-5^{100}\right)+\left(1-5^{ }+5^2-5^3+.....+5^{98}-5^{99}\right)\\ 6S=1-5^{100}\\ S=\dfrac{1-5^{100}}{6}\\ \)

\(b,S6=1-5^{100}\\ 1-S6=5^{100}\) 

=> 5100 chia 6 du 1

 

Nguyễn Minh Dương
29 tháng 6 2023 lúc 16:45

e đang cần gấp, có ai đến giúp e ko?

\(S=1-5+5^2-5^3+...+5^{98}-5^{99}\\ a,S=5^0.\left(1-5\right)+5^2.\left(1-5\right)+...+5^{98}.\left(1-5\right)=-4.\left(5^0+5^2+5^4+...+5^{98}\right)\)

Lầy Lam
Xem chi tiết

Đề bài thiếu yêu cầu cụ thể em nhé. em cập nhật lại câu hỏi để được sự hỗ trợ tốt nhất cho tài khoản olm vip

Nguyễn Quốc Duy
8 tháng 11 2023 lúc 10:52

#@₫!%&@^@₫@₫=_++_×%@%@&@@@@=@

Phạm Duy Lộc
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 11 2023 lúc 21:40

Bài 1:

a: \(S=1-5+5^2-5^3+...+5^{98}-5^{99}\)

=>\(5S=5-5^2+5^3-5^4+...+5^{99}-5^{100}\)

=>\(6S=5-5^2+5^3-5^4+...+5^{99}-5^{100}+1-5+5^2-5^3+...+5^{98}-5^{99}\)

=>\(6S=-5^{100}+1\)

=>\(S=\dfrac{-5^{100}+1}{6}\)

b: S=1-5+52-53+...+598-599 là số nguyên

=>\(\dfrac{-5^{100}+1}{6}\in Z\)

=>\(-5^{100}+1⋮6\)

=>\(5^{100}-1⋮6\)

=>\(5^{100}\) chia 6 dư 1

lê anh khoa
Xem chi tiết
Akai Haruma
13 tháng 12 2022 lúc 23:35

Lời giải:
a. $(x-3)(y+1)=5=1.5=5.1=(-1)(-5)=(-5)(-1)$
Vì $x-3, y+1$ cũng là số nguyên nên ta có bảng sau:

b.

$A=21+5+(5^2+5^3)+(5^4+5^5)+....+(5^{98}+5^{99})$

$=26+5^2(1+5)+5^4(1+5)+....+5^{98}(1+5)$

$=2+24+(1+5)(5^2+5^4+...+5^{98}$

$=2+24+6(5^2+5^4+....+5^{98})=2+6(4+5^2+5^4+...+5^{98})$

$\Rightarrow A$ chia $6$ dư $2$.

Nguyễn Quang Minh
Xem chi tiết
Nguyễn Đình Luật
Xem chi tiết
soyeon_Tiểu bàng giải
6 tháng 8 2016 lúc 21:32

\(\frac{a}{b}=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)

\(\frac{a}{b}=\left(\frac{1}{51}+\frac{1}{100}\right)+\left(\frac{1}{52}+\frac{1}{99}\right)+...+\left(\frac{1}{75}+\frac{1}{76}\right)\)

\(\frac{a}{b}=\frac{151}{51.100}+\frac{151}{50.99}+...+\frac{151}{75.76}\)

Chọn mẫu chung = 51.52.53...100

Gọi các thừa số phụ lần lượt là: k1; k2; ...; k25

=> \(\frac{a}{b}=\frac{151.\left(k_1+k_2+...+k_{25}\right)}{51.52...100}\)

Do 151 là số nguyên tố mà tích 51.52...100 không chứa thừa số 151 => 51.52....100 không chia hết cho 151

=> đến khi phân số a/b tối giản thì a vẫn chia hết cho 151 (đpcm)

Die Devil
6 tháng 8 2016 lúc 21:28

Mik rút gọn cho bn nha

\(\frac{a}{b}=\frac{1}{51.100}+\frac{1}{52.99}+..........+\frac{1}{100.51}\)

\(151.\frac{a}{b}=\frac{1}{51}+\frac{1}{100}+\frac{1}{52}+\frac{1}{99}+......+\frac{1}{100}+\frac{1}{51}\)

\(\Rightarrow\left(151.\frac{a}{b}\right):2=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+.........+\frac{1}{100}\)

\(\Rightarrow\frac{a}{b}=\frac{2}{151}.\left(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+.........+\frac{1}{100}\right)\)

Chúc bn hok tốt

Thư Đỗ Ngọc Anh
Xem chi tiết
Minh Hiếu
28 tháng 12 2021 lúc 20:44

\(B=3+3^2+3^3+3^4+...+3^{2009}+3^{2010}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)

\(=4.\left(3+3^3+...+3^{2009}\right)\)

⇒ \(B\) ⋮ 4

Nguyễn Lê Phước Thịnh
29 tháng 12 2021 lúc 22:00

b: \(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)=31\cdot\left(5+...+5^{2008}\right)⋮31\)

Lê Thị Thu Hương
Xem chi tiết
subjects
28 tháng 12 2022 lúc 10:41

loading...

Vũ Minh Ngọc
Xem chi tiết

1, \(\overline{a45b}\) \(⋮\) 2; 3; 5; 9 

⇒ b = 0; a + 4 + 5 + b ⋮ 9 ⇒ a + 9 ⋮ 9 ⇒ a = 9

Vậy \(\overline{a45b}\) = 9450

2, \(\overline{a1b8}\) \(⋮\) 2;3;9 ⇔ a + 1 + b + 8 ⋮ 9 ⇒ a + b ⋮ 9

⇒ b = 0; 1; 2; 3; 4; 5; 6; 7; 8

     a = 9; 8; 7; 6; 5; 4; 3; 2; 1

\(\Rightarrow\) \(\overline{a1b8}\) = 9108; 8118; 7128; 6138; 5148; 4158; 3168; 2178; 1188

 

3, 2025 + \(\overline{a36}\) \(⋮\)  3

  ⇔ 2 + 0 + 2 + 5 + a + 3 + 6 ⋮ 3

                    18 + a ⋮ 3 

                             a ⋮ 3 

 a = 0; 3; 6; 9 

4, 125 + 5100 + \(\overline{31a}\) ⋮ 5

⇔ \(\overline{31a}\) ⋮ 5 

   a ⋮ 5 

   a = 0; 5

   

Nguyễn Đức Trí
8 tháng 9 2023 lúc 14:19

1) \(\overline{x45y}⋮2;3;5;9\)

\(\Rightarrow y=0\left(⋮2;5\right)\)

\(x+4+5+0⋮\left(3;9\right)\)

\(\Rightarrow x=9\)

\(\Rightarrow\overline{x45y}=9450\)

3) \(2025+\overline{x36}⋮3\)

mà \(2025⋮3\)

\(\Rightarrow\overline{x36}⋮3\)

\(\Rightarrow x+3+6⋮3\)

\(\Rightarrow x\in\left\{3;6;9\right\}\)

3) \(2022^{10}+4^{20}+\overline{53x}⋮2\)

\(2022^{10}=2022^8.2022^2=\overline{.....6}x\overline{....4}=\overline{.....4}⋮2\)

\(4^{20}=\overline{.....6}⋮2\)

\(\Rightarrow\overline{53x}⋮2\)

\(\Rightarrow x\in\left\{0;2;4;6;8\right\}\)

Phương Linh
Xem chi tiết
Võ Ngọc Phương
5 tháng 8 2023 lúc 8:53

Sửa câu a

a)Ta có:

\(A=3+3^2+3^3+...+3^{99}\)

 \(A=\left(3+3^2+3^3\right)+...+\left(3^{97}+3^{98}+3^{99}\right)\) 

\(A=\left(3+3^2+3^3\right)+...+3^{96}.\left(3+3^2+3^3\right)\)

\(A=39+...+3^{96}.39\)

\(A=39.\left(1+...+3^{96}\right)\)

Vì 39 \(⋮\) 13 nên 39 . ( 1 + ... + 396 ) \(⋮\) 13

Vậy A \(⋮\) 13

_________

b)Ta có:

 \(B=5+5^2+5^3+...+5^{50}\)

\(B=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{49}+5^{50}\right)\)

\(B=\left(5+5^2\right)+5^2.\left(5+5^2\right)+...+5^{48}.\left(5+5^2\right)\)

\(B=30+5^2.30+...+5^{48}.30\)

\(B=30.\left(1+5^2+...+5^{48}\right)\)

Vì 30 \(⋮\) 6 nên 30. ( 1 + 52 + ... + 548 ) \(⋮\) 6

Vậy B \(⋮\) 6

Trần đình hoàng
5 tháng 8 2023 lúc 8:46

a,A=3+32+33+..+399=(3+32+33)+...+(397+398+399)

     =3(1+3+32)+...+397(1+3+32)=3x13+...+397x13=13(3+...+97)⋮13

b,B=5+52+...+550=(5+52)+...+(549+550)=5(1+5)+..+549(1+5)

  =5x6+...+549x6=6(5+..+549)⋮6.