tìm x,y,z biết
\(\dfrac{3x-5y}{4}=\dfrac{4z+3x}{5}=\dfrac{5x-4z}{6}\)
tìm x,y,z biết
\(\dfrac{3x-5y}{4}=\dfrac{4z+3x}{5}=\dfrac{5x-4z}{6}\)
Tìm x,y,z biết
\(\dfrac{3x-5y}{4}=\dfrac{4z+3x}{5}=\dfrac{5y-4z}{6}\)
Tìm x,y,z biết
\(\dfrac{3x-5y}{4}=\dfrac{4z+3x}{5}=\dfrac{5y-4z}{6}\)
và x+y+z=16
Tìm x,y,z biết
\(\dfrac{3x-5y}{4}=\dfrac{4z+3x}{5}=\dfrac{5y-4z}{6}\)
Tìm x,y,z biết
\(\dfrac{3x-5y}{4}=\dfrac{4z+3x}{5}=\dfrac{5y-4z}{6}\)
và x+y+z=16
Có\(\dfrac{3x-5y}{4}=\dfrac{4z+=-3x}{5}=\dfrac{5y-4z}{6}=\dfrac{3x-5y+4z-3x+5y-4z}{4+5+6}=\dfrac{0}{15}=0\)\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3x-5y}{4}=0\Rightarrow3x-5y=0\Rightarrow3x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{3}\Rightarrow\dfrac{x}{20}=\dfrac{y}{12}\\\dfrac{5y-4z}{6}=0\Rightarrow5y-4z=0\Rightarrow5y=4z\Rightarrow\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{y}{12}=\dfrac{z}{15}\end{matrix}\right.\)
\(\Rightarrow\dfrac{x}{20}=\dfrac{y}{12}=\dfrac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\Rightarrow\dfrac{x}{20}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y+z}{20+12+15}=\dfrac{16}{47}\)
\(\Rightarrow\dfrac{x}{20}=\dfrac{16}{47}\Rightarrow x=\dfrac{320}{47}\)
\(\Rightarrow\dfrac{y}{12}=\dfrac{16}{47}\Rightarrow y=\dfrac{192}{47}\)
\(\Rightarrow\dfrac{z}{15}=\dfrac{16}{47}\Rightarrow z=\dfrac{240}{47}\)
Vậy \(\left(x;y;z\right)=\left(\dfrac{320}{47};\dfrac{192}{47};\dfrac{240}{47}\right)\)
Cho \(\dfrac{4x-3y}{5}=\dfrac{5y-4z}{3}=\dfrac{3z-5x}{4}\) và x - y + z = 200. Tìm x, y, z
\(\dfrac{4x-3y}{5}=\dfrac{5y-4z}{3}=\dfrac{3z-5x}{4}\)
=>\(\left\{{}\begin{matrix}\dfrac{4x-3y}{5}=\dfrac{5y-4z}{3}\\\dfrac{4x-3y}{5}=\dfrac{3z-5x}{4}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3\left(4x-3y\right)=5\left(5y-4z\right)\\4\left(4x-3y\right)=5\left(3z-5x\right)\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}12x-9y-25y+20z=0\\16x-12y-15z+25x=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}12x-34y+20z=0\\41x-12y-15z=0\end{matrix}\right.\)
mà x-y+z=200 nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}12x-34y+20z=0\\41x-12y-15z=0\\x-y+z=200\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}36x-102y+60z=0\\164x-48y-60z=0\\60x-60y+60z=12000\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}200x-150y=0\\-24x-42y=-12000\\x-y+z=200\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4x-3y=0\\4x+7y=2000\\x-y+z=200\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-10y=-2000\\4x-3y=0\\x-y+z=200\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=200\\4x=3y\\x-y+z=200\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=200\\x=\dfrac{3}{4}y=150\\150-200+z=200\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=200\\x=150\\z=250\end{matrix}\right.\)
Tìm x,y,z biết:
a. \(x=\dfrac{y}{6}=\dfrac{z}{3}và2x-3x-4z=24\)
\(b.6x=10y=15z\) và \(x+y-z=90\)
\(c.\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}và5z-3x-4y=50\)
\(d.\dfrac{x}{4}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{3}vàx-y+100=z\)
a: 2x-3y-4z=24
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{1}=\dfrac{y}{6}=\dfrac{z}{3}=\dfrac{2x-3y-4z}{2\cdot1-3\cdot6-4\cdot3}=\dfrac{24}{-28}=\dfrac{-6}{7}\)
=>x=-6/7; y=-36/7; z=-18/7
b: 6x=10y=15z
=>x/10=y/6=z/4=k
=>x=10k; y=6k; z=4k
x+y-z=90
=>10k+6k-4k=90
=>12k=90
=>k=7,5
=>x=75; y=45; z=30
d: x/4=y/3
=>x/20=y/15
y/5=z/3
=>y/15=z/9
=>x/20=y/15=z/9
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{20}=\dfrac{y}{15}=\dfrac{z}{9}=\dfrac{x-y-z}{20-15-9}=\dfrac{-100}{-4}=25\)
=>x=500; y=375; z=225
Tìm x,y,z biết:
a) \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\) và \(x^2+y^2+z^2=14\)
b) \(\dfrac{3x-2y}{5}=\dfrac{2z-5x}{3}=\dfrac{5y-3z}{2}\) và \(x+y+z=-50\)
c) \(\dfrac{5z-6y}{4}=\dfrac{6x-4z}{5}=\dfrac{4y-5x}{6}\) và \(3x+2y+5z=96\)
a) \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\)
Từ \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\Rightarrow\dfrac{x^3}{2^3}=\dfrac{y^3}{4^3}=\dfrac{z^3}{6^3}\)
\(\Leftrightarrow\dfrac{x^2}{2^2}=\dfrac{y^2}{4^2}=\dfrac{z^2}{6^2}\Leftrightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}=\dfrac{x^2+y^2+z^2}{4+16+36}=\dfrac{14}{56}=\dfrac{1}{4}\)
\(\Rightarrow\dfrac{x^2}{4}=\dfrac{1}{4}\Rightarrow x^2=\dfrac{1}{4}\cdot4\Rightarrow x^2=1\Rightarrow x=1\)
\(\dfrac{y^2}{16}=\dfrac{1}{4}\Rightarrow y^2=\dfrac{1}{4}\cdot16\Rightarrow y^2=4\Rightarrow y=2\)
\(\dfrac{z^2}{36}=\dfrac{1}{4}\Rightarrow z^2=\dfrac{1}{4}\cdot36\Rightarrow z^2=9\Rightarrow z^2=3\)
Xin lỗi mình chỉ làm được câu a)
tìm x;y;z
g) \(\dfrac{3x-2y}{5}=\dfrac{2z-5x}{3}=\dfrac{5y-3z}{2}\) và x+y+z=50
h) \(\dfrac{4z-10y}{3}=\dfrac{10x-3z}{4}=\dfrac{3y-4x}{10}\)
g,
\(\dfrac{3x-2y}{5}=\dfrac{2z-5x}{3}=\dfrac{5y-3z}{2}\)
\(\Rightarrow\dfrac{15x-10y}{25}=\dfrac{6z-15x}{9}=\dfrac{10y-6z}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\dfrac{15x-10y}{25}=\dfrac{6z-15x}{9}=\dfrac{10y-6z}{4}=\dfrac{15x-10y+6z-15x+10y-6z}{25+9+4}=0\)\(\Rightarrow3x-2y=2z-5x=5y-3z=0\)
* 3x - 2y = 0 \(\Rightarrow3x=2y\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\)
* 2z - 5x = 0 \(\Rightarrow2z=5x\Rightarrow\dfrac{x}{2}=\dfrac{z}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y+z}{2+3+5}=\dfrac{50}{10}=5\)
\(\cdot\dfrac{x}{2}=5\Rightarrow x=10\)
\(\cdot\dfrac{y}{3}=5\Rightarrow y=15\)
\(\cdot\dfrac{z}{5}=5\Rightarrow z=25\)