Đề bài :
a) Tìm số tự nhiên a có tính chất : a + 60 và a - 11 đều cho ta kết quả là các số chính phương .
b) Cho S = 3+33 + 35 +...+31999 .Chứng tỏ rằng S chia hết cho 41
Giúp với ạ :>>
Bài 1 : Có số tự nhiên nào mà (4+n).(7+n)= 11 không? Vì sao?
Bài 2: Tìm 3 số nguyên a,b,c thỏa mãn : a+b= -4 ; b+c= -6 ; c+a= 12
Bài 3: Tìm số tự nhiên x nhỏ nhất biết khi chia x cho 6,7,9 được dư lần lượt là 2,3,5
Bài 4: Cho A = 2+22 + 23 + 24 + 25 + 26 + 27 + 28 + 29. Không tính , hãy chứng tỏ A chia hết cho 7
Bài 5: Cho S = 3+32 + 33 + 34 + 35 + 36. Chứng tỏ rằng S chia hết cho 4
Bài 6: Chứng tỏ rằng : Biểu thức A = 31 + 32 + 33 + 34 + ..........+ 32010 chia hết cho 4
Bài 7: Cho S = 1 + 2 + 22 + 23+ 24 + 25 + 26 + 27. Chứng tỏ rằng S chia hết cho 3
Bài 8: Tìm số tự nhiên n sao cho 3 chia hết cho ( n - 1)
giải giúp mình nha 1 bài cũng được
THANK YOU VERY MUCH!
Tìm số tự nhiên a có tính chất a+30 và a-11 đều cho ta kết quả là số chính phương
Tìm số tự nhiên a có tính chất: a+30 và a-11 đều cho ta kết quả là số chính phương
A)cho A=2^1+2^2+2^3+.....+2^60. Chứng minh rằng A chia hết cho 7
B)tìm các số tự nhiên n có 2 chữ số biết rằng 2n+1 và 3n+1 đều là các số chính phương.
giúp mình nhé!
a) A = 21 + 22 + 23 + .................. + 260
A = (21 + 22 + 23) + (24 + 25 + 26) + ................. + (258 + 259 + 260)
A = 2.(1 + 2 + 4) + 24.(1 + 2 + 4) + ...................... + 258.(1 + 2 + 4)
A = 2.7 + 24 . 7 + ................. + 258.7
A = 7.(2 + 24 + ........ + 258)
. A= (2 +22 + 23) + (24 + 25 + 26) + ... + (258 + 259 + 260).
= 2 x (1 + 2 + 22) + 24 x (1 + 2 + 22) + ... + 258 x (1 + 2 + 22).
= 2 x 7 + 24 x 7 + ... + 258 x 7.
= 7 x ( 2 + 24 + ... + 258).
Vì A = 7 x ( 2 + 24 + ... + 258) nên A chia hết cho 7.
b )
Ta có 10 <= n <= 99 nên 21 <= 2n + 1 <= 199
Tìm số chính phương lẻ trong khoảng trên ta được 2n + 1 bằng 25; 49; 81; 121; 169 tương ứng với số n bằng 12; 24; 40; 60; 84
Số 3n + 1 bằng 37; 73; 121; 181; 253. Chỉ có 121 là số chính phương. Vậy n = 40
b) Chúng t dựa vào bài toán sau:
Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath
Các số có hai chữ số thỏa mãn là 40, 80.
a) Tìm tất cả các số tự nhiên \(k\) sao cho \(2k+1\) và \(4k+1\) đều là các số chính phương.
b) Với mỗi số tự nhiên \(k\) thỏa mãn đề bài, chứng minh rằng \(35|k^2-12k\)
cho S = 3 + 3^2 + 3^3 + ... + 3^2021
a, chứng tỏ rằng S chia hết cho 13
b,tìm số tự nhiên 'n' biết 2S + 3 = 3^2n
c, chứng tỏ S không là số chính phương
a) tính ss hạng rồi nhóm 3 số hạng vào 1 nhóm
vì tổng của 1 nhóm chia hết cho 13
=>s chia hết cho 13
b)n=1011
c) cmr s :4 dư 3
từ đó
=>s không là số chính phương vì s:4 dư 3
Bài 1: Khi chia số tự nhiên a cho 148 ta được số dư là 111. Hỏi a có chia hết cho 37 không ? Vì sao?
Bài 2: Chứng tỏ rằng với mọi số tự nhiên n thì tích (n + 3)(n + 12) là số chia hết cho 2
Bài 3: Chứng minh rằng: ab ba + chia hết cho 11 Bài 7: Chứng tỏ: A = 31 + 32 + 33 + … + 360 chia hết cho 13
Bài 4: Cho M = 2 + 22 + 23 + … + 220 . Chứng tỏ rằng M 5
Bài 5: Tìm số tự nhiên n để (3n + 4) chia hết cho n – 1.
giúp mình nha!!!=333
Bài 5:
Ta có: \(3n+4⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{2;0;8;-6\right\}\)
Bài 1
a. Cho S = 3+3^2+3^3+3^4+3^5+3^6
Chứng tỏ rằng S chia hết cho 4
b. Chứng tỏ rằng : A = 4+4^2+4^3+4^4+4^5+4^6+4^7+4^8+4^9
Chia hết cho cả 3 và 4
Bài 2
a. Tìm số tự nhiên n sao cho 3 chia hết cho (n-1)
b. Tìm số tự nhiên n sao cho n+3 chia hết cho (n+1)
Bài 3
10^35 + 2 có chia hết cho 3 không. Vì sao?
Giup mik nha ai nhanh nhất mik sẽ TICK cho
Giúp với
Chứng tỏ rằng 3^4+3^5+3^6+3^7+3^8+3^9 chia hết cho 4 không tính nhân ra rồi chia nha
a) Cho S = 5 + 52 + 53 + 54 + 55 + 56 +…+ 52012. Chứng tỏ S chia hết cho 65.
b) Tìm số tự nhiên nhỏ nhất sao cho khi chia cho 11 dư 6, chia cho 4 dư 1 và chia cho 19 dư 11.
c) Chứng tỏ: A = 10n + 18n - 1 chia hết cho 27 (với n là số tự nhiên)
a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012.
S = (5 + 52 + 53 + 54) + 55(5 + 52 + 53 + 54)+....+ 52009(5 + 52 + 53 + 54)
Vì (5 + 52 + 53 + 54) = 780 chia hết cho 65
Vậy S chia hết cho 65
b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19.
(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.
(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19.
Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất
Suy ra: a + 27 = BCNN (4;11; 19).
Từ đó tìm được: a = 809
A = 10n + 18n - 1 = 10n - 1 - 9n + 27n
Ta biết số n và số có tổng các chữ số bằng n có cùng số dư khi chia cho 9 do đó nên
* Vậy A chia hết cho 27