Cho ABC
Biet\(\widehat{A}\) = 78 ,\(\widehat{B}\) =64 Tinh \(\widehat{C}\)
tinh gia tri cua tam giac ABC biet :
a,\(\widehat{A}=80^o,\widehat{B}-\widehat{C}=30^o\)
b,\(5\widehat{A}=3\widehat{B}\)va \(7\widehat{A}-4\widehat{B}=15^o\)
Bài làm
a) Tổng số đo của góc B và C là:
180o - 80o = 100o
Số đo góc B là:
( 100o + 30o ) : 2 = 65o
Số đo góc C là:
100o - 65o = 35o
Vậy góc B = 65o
góc C = 35o
# Học tốt #
Bài làm
Ta có: \(5.\widehat{A}=3.\widehat{B}\)
=> \(\frac{\widehat{A}}{3}=\widehat{\frac{B}{5}}\Rightarrow\frac{7.\widehat{A}}{21}=\frac{4.\widehat{B}}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{7.\widehat{A}}{21}=\frac{4.\widehat{B}}{20}=\frac{7\widehat{A}-4\widehat{B}}{21-20}=\frac{15^0}{1}=15^0\)
Do đó: \(\hept{\begin{cases}\widehat{\frac{A}{3}}=15^0\\\widehat{\frac{B}{5}}=15^0\end{cases}\Rightarrow\hept{\begin{cases}A=45^0\\B=75^0\end{cases}}}\)
Vậy A = 45o , B = 75o
# Học tốt #
Cho tam giác ABC vuông tại A, biết \(\widehat{B}=4\widehat{C}\). Tìm số đo của góc B
\(A.\widehat{B}=72^0\) \(B.\widehat{B}=18^0\) \(C.\widehat{B}=48^0\) \(D.\widehat{B}=64^0\)
1, Cho \(\Delta ABC\) biết \(\widehat{A}\)=\(\widehat{B}\)=\(\widehat{C}\). Tính số đo của mỗi góc
2, Cho \(\Delta ABC\) biết \(\widehat{A}\)= 70 độ; \(\widehat{B}\)-\(\widehat{C}\)=10 độ. Tính \(\widehat{B}\); \(\widehat{C}\)
\(1,\widehat{A}+\widehat{B}+\widehat{C}=180^0\\ \text{Mà }\widehat{A}=\widehat{B}=\widehat{C}\\ \Rightarrow\widehat{A}=\widehat{B}=\widehat{C}=\dfrac{180^0}{3}=60^0\\ 2,\widehat{A}+\widehat{B}+\widehat{C}=180^0\\ \Rightarrow\widehat{B}+\widehat{C}=180^0-\widehat{A}=110^0\\ \text{Mà }\widehat{B}-\widehat{C}=10^0\\ \Rightarrow\left\{{}\begin{matrix}\widehat{B}=\left(110^0+10^0\right):2=60^0\\\widehat{C}=60^0-10^0=50^0\end{matrix}\right.\)
Giải tam giác ABC trong các trường hợp sau:
a) \(AB = 14,AC = 23,\widehat A = {125^o}.\)
b) \(BC = 22,4;\widehat B = {64^o};\widehat C = {38^o}.\)
c) \(AC = 22,\widehat B = {120^o},\widehat C = {28^o}.\)
d) \(AB = 23,AC = 32,BC = 44\)
a) Ta cần tính cạnh BC và hai góc \(\widehat B,\widehat C.\)
Áp dụng định lí cosin, ta có:
\(\begin{array}{l}B{C^2} = A{B^2} + A{C^2} - 2.AB.AC.\cos A\\ \Leftrightarrow B{C^2} = {14^2} + {23^2} - 2.14.23.\cos {125^o}\\ \Rightarrow BC \approx 33\end{array}\)
Áp dụng định lí sin, ta có:
\(\begin{array}{l}\frac{{BC}}{{\sin A}} = \frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}} \Leftrightarrow \frac{{33}}{{\sin {{125}^o}}} = \frac{{23}}{{\sin B}} = \frac{{14}}{{\sin C}}\\ \Rightarrow \sin B = \frac{{23.\sin {{125}^o}}}{{33}} \approx 0,57\\ \Rightarrow \widehat B \approx {35^o} \Rightarrow \widehat C \approx {20^o}\end{array}\)
b) Ta cần tính góc A và hai cạnh AB, AC.
Ta có: \(\widehat A = {180^o} - \widehat B - \widehat C = {180^o} - {64^o} - {38^o} = {78^o}\)
Áp dụng định lí sin, ta có:
\(\begin{array}{l}\frac{{BC}}{{\sin A}} = \frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}} \Leftrightarrow \frac{{22}}{{\sin {{78}^o}}} = \frac{{AC}}{{\sin {{64}^o}}} = \frac{{AB}}{{\sin {{38}^o}}}\\ \Rightarrow \left\{ \begin{array}{l}AC = \sin {64^o}.\frac{{22}}{{\sin {{78}^o}}} \approx 20,22\\AB = \sin {38^o}.\frac{{22}}{{\sin {{78}^o}}} \approx 13,85\end{array} \right.\end{array}\)
c) Ta cần tính góc A và hai cạnh AB, BC.
Ta có: \(\widehat A = {180^o} - \widehat B - \widehat C = {180^o} - {120^o} - {28^o} = {32^o}\)
Áp dụng định lí sin, ta có:
\(\begin{array}{l}\frac{{BC}}{{\sin A}} = \frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}} \Leftrightarrow \frac{{BC}}{{\sin {{32}^o}}} = \frac{{22}}{{\sin {{120}^o}}} = \frac{{AB}}{{\sin {{28}^o}}}\\ \Rightarrow \left\{ \begin{array}{l}BC = \sin {32^o}.\frac{{22}}{{\sin {{120}^o}}} \approx 13,5\\AB = \sin {28^o}.\frac{{22}}{{\sin {{120}^o}}} \approx 12\end{array} \right.\end{array}\)
d) Ta cần tính số đo ba góc \(\widehat A,\widehat B,\widehat C\)
Áp dụng hệ quả của định lí cosin, ta có:
\(\begin{array}{l}\cos A = \frac{{A{C^2} + A{B^2} - B{C^2}}}{{2.AB.AC}};\cos B = \frac{{B{C^2} + A{B^2} - A{C^2}}}{{2.BC.BA}}\\ \Rightarrow \cos A = \frac{{{{32}^2} + {{23}^2} - {{44}^2}}}{{2.32.23}} = \frac{{ - 383}}{{1472}};\cos B = \frac{{{{44}^2} + {{23}^2} - {{32}^2}}}{{2.44.23}} = \frac{{131}}{{184}}\\ \Rightarrow \widehat A \approx {105^o},\widehat B = {44^o}36'\\ \Rightarrow \widehat C = {30^o}24'\end{array}\)
a, Cho tam giác ABC biết \(\widehat{A}=100^o,\widehat{B}-\widehat{C}=50^o.Tính\widehat{B},\widehat{C}\)
b, Tam giác ABC có\(\widehat{B}=80^o,3\widehat{A}=2\widehat{C}.Tính\widehat{A},\widehat{C}\)
a)
=> Ta có : \(\widehat{A}+\widehat{B}+\widehat{C}\) = 180o
100o + \(\widehat{B}+\widehat{C}\) = 180o
\(\widehat{B}+\widehat{C}\) = 180o - 100o
\(\widehat{B}+\widehat{C}\) = 80o
Góc B = (80o+50o):2 = 65o
=> \(\widehat{C}\) = 65o - 50o = 15o
Vậy \(\widehat{B}\) = 65o ; \(\widehat{C}\) = 15o
b)
Ta có : \(\widehat{3A}+\widehat{B}+\widehat{2C}\) = 180o
\(\widehat{3A}+\widehat{2C}\) = 180o - 80o
\(\widehat{3A}+\widehat{2C}\) = 100o
=> \(\widehat{A}\) = 100o:(3+2).3 = 60o
\(\widehat{C}\) = 100o - 60o = 40o
Vậy \(\widehat{A}\) = 60o ; \(\widehat{C}\) = 40o
Bai 1 giai tam giac ABC vuong tai A, biet
a/ AB = 6cm, \(\widehat{B}\) = 40
b/ AB= 10cm, \(\widehat{C}\) = 35
c/BC=32cm, AC = 20cm
d/ AB = 18cm, AC=21cm
Bai 2 Cho △ABC co AB=40cm , AC=58cm , BC=42cm
a/ △ ABC co phai la tam giac vuong hay k ? vi sao ?
b/ Ke duong cao BH cua tam giac . Tinh do dai BH ?
c/ Tinh ti so luong giac cua goc A
Bai 3 : Cho △ABC co AB=5cm , \(\widehat{B}\) =60 , \(\widehat{A}\) = 45
a/ tinh do dai BC va AC
b/ Tinh dien tich △ABC
Giải tam giác ABC trong các trường hợp sau:
a) \(a = 17,4;\widehat B = {44^o}30'\widehat C = {64^o}.\)
b) \(a = 10;b = 6;c = 8.\)
a) Ta cần tính góc \(\widehat A\) và hai cạnh \(b,c.\)
Ta có: \(\widehat A = {180^o} - \widehat B - \widehat C = {180^o} - {44^o}30' - {64^o} = {71^o}30'.\)
Áp dụng định lí sin, ta có:
\(\begin{array}{l}\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} \Rightarrow \frac{{17,4}}{{\sin {{71}^o}30'}} = \frac{b}{{\sin {{44}^o}30'}} = \frac{c}{{\sin {{64}^o}}}\\ \Rightarrow \left\{ \begin{array}{l}b = \sin {44^o}30'.\frac{{17,4}}{{\sin {{71}^o}30'}} \approx 12,86\\c = \sin {64^o}.\frac{{17,4}}{{\sin {{71}^o}30'}} \approx 16,5\end{array} \right.\end{array}\)
b) Ta cần tính số đo ba góc \(\widehat A,\widehat B,\widehat C\)
Áp dụng hệ quả của định lí cosin, ta có:
\(\begin{array}{l}\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}};\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}}\\ \Rightarrow \cos A = \frac{{{6^2} + {8^2} - {{10}^2}}}{{2.6.8}} = 0;\cos B = \frac{{{{10}^2} + {8^2} - {6^2}}}{{2.10.8}} = \frac{4}{5}\\ \Rightarrow \widehat A = {90^o},\widehat B = {36^o}52'11,63''\\ \Rightarrow \widehat C = {53^o}7'48,37''\end{array}\)
1.Cho hình 16:
a) Cho biết \(Ax//Cy.So\) \(sánh \)\(\widehat{ABC}\) với \(\widehat{A}\) và \(\widehat{C}\)
b) Cho biết \(\widehat{ABC}\)=\(\widehat{A}\) và\(\widehat{C}\) . Chứng tỏ rằng \(Ax//\) Cy
Cho tam giác ABC có các cạnh a=BC; b=AC; c=AB. CMR:
a) \(a\widehat{A}+b\widehat{B}\ge a\widehat{B}+b\widehat{A}\)
b) \(a\widehat{A}+b\widehat{B}+c\widehat{C}\ge60^0\left(a+b+c\right)\)
c) \(a\left(\widehat{A}-60^0\right)+b\left(\widehat{B}-60^0\right)+c\left(\widehat{C}-60^0\right)\ge0\)
d) \(\frac{a\widehat{A}+b\widehat{B}}{\widehat{A}+\widehat{B}}+\frac{b\widehat{B}+c\widehat{C}}{\widehat{B}+\widehat{C}}+\frac{c\widehat{C}+a\widehat{A}}{\widehat{C}+\widehat{A}}\ge a+b+c\)
e) \(\frac{\left(a-b\right)\widehat{B}}{\widehat{A}+\widehat{B}}+\frac{\left(b-c\right)\widehat{C}}{\widehat{B}+\widehat{C}}+\frac{\left(c-a\right)\widehat{A}}{\widehat{C}+\widehat{A}}\le0\)
f) \(\frac{a\widehat{A}+b\widehat{B}+c\widehat{C}}{a+b+c}< 90^0\)
Cho tam giác ABC vuông tại A và tam giác DEF vuông tại D. Điều nào dưới đây không suy ra ΔABC ∽ ΔDEF
A. \(\widehat B = \widehat E\)
B. \(\widehat C = \widehat F\)
C. \(\widehat B + \widehat C = \widehat E + \widehat F\)
D. \(\widehat B - \widehat C = \widehat E - \widehat F\)
Đáp án đúng là đáp án C.
Vì \(\widehat B + \widehat C = \widehat E + \widehat F\) chưa thể suy ra được \( \widehat B = \widehat E\) và \( \widehat C = \widehat F \)