BT1: Tìm x, biết:
4) \(25\le5^{x+1}\le625\left(x\in N\right)\)
Cho \(E=\left\{x\in Z|\left|x\right|\le5\right\}\); \(A=\left\{x\in R|x^2+3x-4=0\right\}\);
\(B=\left\{x\in Z|(x-2)(x+1)(2x^2-x-3)=0\right\}\)
a) CM \(A\subset E\),\(B\subset E\)
b) Tìm \(E\backslash\left(A\cap B\right)\),\(E\backslash\left(A\cup B\right)\) rồi tìm quan hệ giữa hai tập hợp này.
\(E=\left\{-5;-4;-3;-2;-1;0;1;2;3;4;5\right\}\)
\(A=\left\{1;-4\right\}\)
\(B=\left\{2;-1\right\}\)
a) Với mọi x thuộc A đều thuộc E \(\Rightarrow A\subset E\)
Với mọi x thuộc B đều thuộc E \(\Rightarrow B\subset E\)
b) \(A\cap B=\varnothing\)
\(\Rightarrow E\backslash\left(A\cap B\right)=\left\{-5;-4;-3;-2;-1;0;1;2;3;4;5\right\}\)
\(A\cup B=\left\{-4;-1;1;2\right\}\)
\(\Rightarrow E\backslash\left(A\cup B\right)=\left\{-5;-3;-2;0;3;4;5\right\}\)
\(\Rightarrow E\backslash\left(A\cup B\right)\subset E\backslash\left(A\cap B\right)\)
BT1: Khai triển
\(d,\left(x+2\right)\left(x^2-2x+4\right)\)
\(e,\left(\dfrac{1}{4}-\dfrac{x}{5}\right)\left(\dfrac{x^2}{25}+\dfrac{x}{20}+\dfrac{1}{16}\right)\)
d) \(\left(x+2\right)\left(x^2-2x+4\right)\)
\(=\left(x+2\right)\left(x^2-2\cdot x+2^2\right)\)
\(=x^3+2^3\)
\(=x^3+8\)
e) \(\left(\dfrac{1}{4}-\dfrac{x}{5}\right)\left(\dfrac{x^2}{25}+\dfrac{x}{20}+\dfrac{1}{16}\right)\)
\(=\left(\dfrac{1}{4}-\dfrac{1}{5}x\right)\left(\dfrac{1}{25}x^2+\dfrac{1}{5}x\cdot\dfrac{1}{4}+\dfrac{1}{16}\right)\)
\(=\left(\dfrac{1}{4}-\dfrac{1}{5}x\right)\left[\left(\dfrac{1}{5}x\right)^2+\dfrac{1}{5}x\cdot\dfrac{1}{4}+\left(\dfrac{1}{4}\right)^2\right]\)
\(=\left(\dfrac{1}{4}\right)^3-\left(\dfrac{1}{5}x\right)^3\)
\(=\dfrac{1}{64}-\dfrac{1}{125}x^3\)
\(=\dfrac{1}{64}-\dfrac{x^3}{125}\)
d: (x+2)(x^2-2x+4)
=(x+2)(x^2-x*2+2^2)
=x^3+8
e: (1/4-x/5)(1/16+x/20+x^2/25)
=(1/4-x/5)[(1/4)^2+1/4*x/5+(x/5)^2]
=1/64-x^3/125
L=\(\left\{x\in R|\frac{x^2-1}{x-1}=0\right\}\)
M=\(\left\{\frac{\left(-1\right)^n}{n}|n\in N,1\le n\le5\right\}\)
Tìm x biết\(x\in Z\\ x>0\\ \left|2x+3\right|\le5\):
Ta thấy \(\left|2x+3\right|\ge0\forall x\)
Để \(\left|2x+3\right|\le5\)
\(\Rightarrow-5\le2x+3\le5\)
\(\Rightarrow-4\le x\le1\)
Mà x > 0
\(\Rightarrow x=1\)
KL x=1
Ta có:\(2x+3=5\)
\(\Rightarrow2x=5-3\)
\(\Rightarrow2x=2\)
\(\Rightarrow x=1\)
Vậy \(x=1\).Mình nhanh nhất tịck nhé
Xác định các tập: \(A\cup B,A\cap B;A\backslash B;B\backslash A\)
a, \(A=\left\{x\in R|-3\le x\le5\right\};B==\left\{x\in R|\left|x\right|< 4\right\}\)
b, \(A=\left[1;5\right];B=\left(-3;2\right)\cup\left(3;7\right)\)
c, \(A=\left\{x\in R|\dfrac{1}{\left|x-1\right|}\ge2\right\};B=\left\{x\in R|\left|x-2\right|\le1\right\}\)
d, \(A=\left[0;2\right]\cup\left(4;6\right);B=(-5;0]\cup\left(3;5\right)\)
a, \(A\cup B=(-4;5]\)
\(A\cap B=[-3;4)\)
\(A\backslash B=\left[4;5\right]\)
\(B\backslash A=\left(-4;-3\right)\)
b, \(A\cup B=\left(-3;7\right)\)
\(A\cap B=[1;2)\cup(3;5]\)
\(A\backslash B=\left[2;3\right]\)
\(B\backslash A=\left(-3;1\right)\cup\left(5;7\right)\)
c, \(A\cup B=\left[\dfrac{1}{2};3\right]\)
\(A\cap B=\left[1;\dfrac{3}{2}\right]\)
\(A\backslash B=[\dfrac{1}{2};1)\)
\(B\backslash A=(\dfrac{3}{2};3]\)
d, \(A\cup B=(-5;2]\cup(3;6]\)
\(A\cap B=\left\{0\right\}\cup[4;5)\)
\(A\backslash B=(0;2]\cup\left[-5;6\right]\)
\(B\backslash A=[-5;0)\cup\left(3;4\right)\)
cho tập \(Â=\left\{x\in R|2x-1< 5\right\},B=\left\{x\in Z|-1\le x\le5\right\}\)
và C là tập giá trị hàm: y=x^2-2x+m trên \([-1;1)\)
a, tìm \(A\cap B\)
b, tìm m để \(C\subset A\)
\(a,\)\(A=\left\{x\in R|x< 3\right\}\Rightarrow A=\left(\text{ -∞;3}\right)\)
\(B=\left\{-1;0;1;2;3;4;5\right\}\)
\(\Rightarrow A\cap B=\left\{-1;0;1;2\right\}\)
\(b,x=-1\Rightarrow y=1-2\left(-1\right)+m=m+3\)
\(x=1\Rightarrow y=1-2+m=m-1\)
\(\Rightarrow C=(m-1;m+3]\subset A\)
\(\Rightarrow C\subset A\Leftrightarrow m+3< 3\Leftrightarrow m< 0\)
BT1: Tìm x, biết:
3) \(6.8^{x-1}+8^{x+1}=6.8^{19}+8^{20}\left(x\in N\right)\)
\(\Leftrightarrow8^x\cdot6\cdot\dfrac{1}{8}+8^x\cdot8=8^{19}\left(6+8\right)\)
\(\Leftrightarrow8^x=8^{19}\cdot14:\left(\dfrac{3}{4}+8\right)=8^{19}\cdot\dfrac{8}{5}=\dfrac{8^{20}}{5}\)
\(\Leftrightarrow x\in\varnothing\)
Tìm phần bù của các tập hợp sau theo R:
a, \(A=[-12;10)\)
b, \(B=\left(-\infty;-2\right)\cup\left(2;+\infty\right)\)
c, \(C=[3;+\infty)\backslash\left\{5\right\}\)
d, \(D=\left\{x\in R|-4< x+2\le5\right\}\)
Tìm phần bù của accs tập hợp sau theo R:
a, \(A=[-12;10)\)
b, \(B=\left(-\infty;-2\right)\cup\left(2;+\infty\right)\)
c, \(C=[3;+\infty)\backslash\left\{5\right\}\)
d, \(D=\left\{x\in R|-4< x+2\le5\right\}\)