Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
KYAN Gaming
Xem chi tiết
Nguyễn Hoàng Minh
8 tháng 8 2021 lúc 9:09

\(A=1-\left(\dfrac{2}{1+2\sqrt{x}}-\dfrac{5\sqrt{x}}{4x-1}-\dfrac{1}{1-2\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{4x+4\sqrt{x}+1}\)

\(A=1-\dfrac{2\left(2\sqrt{x}-1\right)-5\sqrt{x}+\left(2\sqrt{x}+1\right)}{\left(2\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)}:\dfrac{\sqrt{x}-1}{\left(2\sqrt{x}+1\right)^2}\)

\(A=1-\dfrac{4\sqrt{x}-2-5\sqrt{x}+2\sqrt{x}+1}{\left(2\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)}\cdot\dfrac{\left(2\sqrt{x}+1\right)^2}{\sqrt{x}-1}\)

\(A=1-\dfrac{\sqrt{x}-1}{\left(2\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)}\cdot\dfrac{\left(2\sqrt{x}+1\right)^2}{\sqrt{x}-1}\)

\(A=1-\dfrac{2\sqrt{x}+1}{2\sqrt{x}-1}=\dfrac{2\sqrt{x}-1-2\sqrt{x}-1}{2\sqrt{x}-1}=\dfrac{-2}{2\sqrt{x}-1}\)

Tick hộ nha

 

Quynh Existn
Xem chi tiết
Nguyễn Huy Tú
20 tháng 7 2021 lúc 10:01

undefined

Quynh Existn
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 7 2021 lúc 19:57

a) Ta có: \(A=\left(\dfrac{1}{\sqrt{a}+2}+\dfrac{1}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}}{a-4}\)

\(=\dfrac{\sqrt{a}-2+\sqrt{a}+2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\cdot\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\sqrt{a}}\)

=2

b) Ta có: \(B=\left(\dfrac{4x}{\sqrt{x}-1}-\dfrac{\sqrt{x}-2}{x-3\sqrt{x}+2}\right)\cdot\dfrac{\sqrt{x}-1}{x^2}\)

\(=\dfrac{4x-1}{\sqrt{x}-1}\cdot\dfrac{\sqrt{x}-1}{x^2}\)

\(=\dfrac{4x-1}{x^2}\)

Hồng Giang
Xem chi tiết
Nguyễn Duy Khang
22 tháng 12 2020 lúc 16:20

a) ĐKXĐ: 

\(\left\{{}\begin{matrix}\sqrt{x}-2>0\\\sqrt{x}+2>0\\\sqrt{4x}>0\end{matrix}\right.\\ \rightarrow\left\{{}\begin{matrix}\sqrt{x}>2\\\sqrt{x}>-2\\2\sqrt{x}>0\end{matrix}\right.\\\rightarrow \left\{{}\begin{matrix}x>\sqrt{2}\\x>-\sqrt{2}\\x>0\end{matrix}\right.\\ \rightarrow x>\sqrt{2}\)

Vậy \(x>\sqrt{2}\)

b) 

\(M=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right).\dfrac{x-4}{\sqrt{4x}}\\ =\left[\dfrac{\sqrt{x}.\left(\sqrt{x}+2\right)+\sqrt{x}.\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right].\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{2\sqrt{x}}\\ =\dfrac{x+2\sqrt{x}+x-2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{2\sqrt{x}}\\ =\dfrac{2x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{2\sqrt{x}}\\ =\dfrac{2x}{2\sqrt{x}}=\dfrac{x}{\sqrt{x}}=\dfrac{\sqrt{x}.\sqrt{x}}{\sqrt{x}}=\sqrt{x}\)

Vậy \(M=\sqrt{x}\)

Nguyễn Duy Khang
22 tháng 12 2020 lúc 16:25

a) ĐKXĐ:

\(\left\{{}\begin{matrix}\sqrt{x}-2>0\\\sqrt{x}+2>0\\\sqrt{4x}>0\end{matrix}\right.\\ \rightarrow\left\{{}\begin{matrix}\sqrt{x}>2\\\sqrt{x}>-2\\2\sqrt{x}>0\end{matrix}\right.\\ \rightarrow\left\{{}\begin{matrix}x>4\\x>-4\\x>0\end{matrix}\right.\\ \rightarrow x>4\)

Vậy \(x>4\)

KYAN Gaming
Xem chi tiết
Nguyễn Huy Tú
25 tháng 7 2021 lúc 15:53

\(A=\left(\sqrt{x}+\dfrac{4\sqrt{x}}{\sqrt{x}-2}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{4}{2\sqrt{x}-x}\right)\)ĐK : x > 0 ; x \(\ne\)4

\(=\left(\dfrac{x+2\sqrt{x}}{\sqrt{x}-2}\right):\left(\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)=\dfrac{x\left(x-4\right)}{\left(\sqrt{x}-2\right)\left(x-4\right)}\)

\(=\dfrac{x}{\sqrt{x}-2}\)

Nguyễn Lê Phước Thịnh
25 tháng 7 2021 lúc 19:54

Ta có: \(A=\left(\sqrt{x}+\dfrac{4\sqrt{x}}{\sqrt{x}-2}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{4}{2\sqrt{x}-x}\right)\)

\(=\dfrac{x-2\sqrt{x}+4\sqrt{x}}{\sqrt{x}-2}:\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{x}{\sqrt{x}-2}\)

Nguyễn Châu Mỹ Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 5 2021 lúc 13:44

Câu 1:

Sửa đề: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)

Ta có: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)

\(=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}+3\right)}+\dfrac{1}{\sqrt{x}+3}\right):\left(\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\right)\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}:\dfrac{x+3\sqrt{x}-2\sqrt{x}-6+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{x+\sqrt{x}}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=1\)

Nguyễn Lê Phước Thịnh
5 tháng 5 2021 lúc 13:46

Câu 3: 

Ta có: \(Q=\left(\dfrac{a}{a-2\sqrt{a}}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{a-4\sqrt{a}+4}\)

\(=\left(\dfrac{a}{\sqrt{a}\left(\sqrt{a}-2\right)}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-2\right)^2}\)

\(=\dfrac{a+\sqrt{a}}{\sqrt{a}-2}\cdot\dfrac{\sqrt{a}-2}{\sqrt{a}+1}\cdot\dfrac{\sqrt{a}-2}{1}\)

\(=\sqrt{a}\left(\sqrt{a}-2\right)\)

\(=a-2\sqrt{a}\)

Ly Ly
Xem chi tiết
Lấp La Lấp Lánh
26 tháng 9 2021 lúc 21:20

a) \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right).\dfrac{x-4}{\sqrt{4x}}=\dfrac{x+2\sqrt{x}+x-2\sqrt{x}}{x-4}.\dfrac{x-4}{2\sqrt{x}}=\dfrac{2x}{2\sqrt{x}}=\sqrt{x}\)

b) \(P=\sqrt{x}>3\Leftrightarrow x>9\)

Nguyễn Lê Phước Thịnh
26 tháng 9 2021 lúc 21:22

a: Ta có: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right)\cdot\dfrac{x-4}{2\sqrt{x}}\)

\(=\dfrac{x+2\sqrt{x}+x-2\sqrt{x}}{2\sqrt{x}}\)

\(=\sqrt{x}\)

b: Để P>3 thì x>9

Phạm Trần Bỏ Phương
Xem chi tiết
Lê Ng Hải Anh
24 tháng 5 2021 lúc 16:48

\(\left(\dfrac{\sqrt{x}}{x-4}+\dfrac{2}{2-\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right):\left(\sqrt{x}-2+\dfrac{10-x}{\sqrt{x}+2}\right)\) (ĐK: x ≥ 0, x ≠ 4)

\(=\left[\dfrac{\sqrt{x}-2\left(\sqrt{x}+2\right)+\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right]:\left[\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)+10-x}{\sqrt{x}+2}\right]\)

\(=\left(\dfrac{-6}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right):\dfrac{6}{\sqrt{x}+2}\)

\(=\dfrac{\left(-6\right)\left(\sqrt{x}+2\right)}{6\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{-1}{\sqrt{x}-2}\)

Vậy...

 

An Đinh Khánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 8 2023 lúc 9:02

a: \(A=\dfrac{1}{x-1}\cdot5\sqrt{3}\cdot\left|x-1\right|\cdot\sqrt{x-1}\)

\(=\dfrac{5\sqrt{3}}{x-1}\cdot\left(x-1\right)\cdot\sqrt{x-1}=5\sqrt{3}\cdot\sqrt{x-1}\)

b: \(B=10\sqrt{x}-3\cdot\dfrac{10\sqrt{x}}{3}-\dfrac{4}{x}\cdot\dfrac{x\sqrt{x}}{2}\)

\(=10\sqrt{x}-10\sqrt{x}-\dfrac{4\sqrt{x}}{2}=-2\sqrt{x}\)

c: \(C=x-4+\left|x-4\right|\)

=x-4+x-4

=2x-8

nood
Xem chi tiết
乇尺尺のレ
21 tháng 9 2023 lúc 21:21

\(a)C=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right)\dfrac{x-4}{\sqrt{4x}}\\ =\left(\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{x-4}+\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{x-4}\right)\dfrac{x-4}{2\sqrt{x}}\\ =\left(\dfrac{x+2\sqrt{x}+x-2\sqrt{x}}{x-4}\right)\dfrac{x-4}{2\sqrt{x}}\\ =\dfrac{2x}{x-4}\cdot\dfrac{x-4}{2\sqrt{x}}\\ =\dfrac{2x\left(x-4\right)}{2\sqrt{x}\left(x-4\right)}\\ =\sqrt{x}\)

b) C>3

\(\Rightarrow\sqrt{x}>3\\ \Leftrightarrow x>9\)