tính giá trị của phân thức M = \(\dfrac{5x-4y}{5x+4y}\) biết rằng 25x^2 + 16y^2 = 41xy và 4y<5x<0
tinh m=(5x-4y)/(5x+4y) biet 25x^2 +16y^2=41xy va4y<5x<0
tinh m=(5x-4y)/(5x+4y) biet 25x^2+16y^2=41xy va4y<5x<0
Tính giá trị biểu thức\(M=\frac{5x-4y}{5x+4y}\)
Biết\(\hept{\begin{cases}26x^2+16y^2=41xy\\4y< 5x< 0\end{cases}}\)
cho phân thức p =(5x-4y)/(5x+4y) với 25x^2+16y^2=50xy khi đó gia trị của biểu thức A=(1+p^2)/(1-p^2) là ?
tìm giá trị của phân thức P=\(\dfrac{5x-4y}{5x+4y}\) với 25x2+ 16y2=50xy và 4y<5x<0
Ta có:
\(P=\dfrac{5x-4y}{5x+4y}\)
\(\Leftrightarrow P^2=\left(\dfrac{5x-4y}{5x+4y}\right)^2\)
\(\Leftrightarrow P^2=\dfrac{\left(5x-4y\right)^2}{\left(5x+4y\right)^2}\)
\(\Leftrightarrow P^2=\dfrac{\left(5x\right)^2-2\cdot5x\cdot4y+\left(4y\right)^2}{\left(5x\right)^2+2\cdot5x\cdot4y+\left(4y\right)^2}\)
\(\Leftrightarrow P^2=\dfrac{\left(25x^2+16y^2\right)-40xy}{\left(25x^2+16y^2\right)+40xy}\)
Thay \(25x^2+16y^2=50xy\) vào ta có:
\(P^2=\dfrac{50xy-40xy}{50xy+40xy}=\dfrac{10xy}{90xy}=\dfrac{1}{9}=\left(\dfrac{1}{3}\right)^2\)
Mà: \(4y< 5x< 0\)
Nên: \(P=\dfrac{5x-4y}{5x+4y}< 0\)
Vậy: \(P=-\dfrac{1}{3}\)
25x^2+16y^2=50xy
=>25x^2-50xy+16y^2=0
=>25x^2-10xy-40xy+16y^2=0
=>5x(5x-2y)-8y(5x-2y)=0
=>(5x-2y)(5x-8y)=0
=>5x=2y hoặc 5x=8y
5x>4y
=>5x=8y
=>x/8=y/5=k
=>x=8k; y=5k
\(P=\dfrac{5\cdot8k-4\cdot5k}{5\cdot8k+4\cdot5k}=\dfrac{40-20}{40+20}=\dfrac{1}{3}\)
Cho \(P=\frac{5x-4y}{5x+4y}\) với \(25x^2+16y^2=50xy\)
Tìm giá trị của biểu thức \(A=\frac{1+P^2}{1-P^2}\)
Cho \(P=\frac{5x-4y}{5x+4y}\) với \(25x^2+16y^2=50xy\)
Tìm giá trị của biểu thức \(A=\frac{1+P^2}{1-P^2}\)
Tính giá trị của phân thức \(A=\dfrac{3x-2y}{3x+2y}\), biết rằng: \(9x^2+4y^2=20xy\) và 2y<3x<0
Ta có: \(A^2=\dfrac{\left(3x-2y\right)^2}{\left(3x+2y\right)^2}\)
\(=\dfrac{9x^2+4x^2-12xy}{9x^2+4x^2+12xy}\)
\(=\dfrac{20xy-12xy}{20x^2+12xy}\)
\(=\dfrac{8xy}{32xy}=\dfrac{1}{4}\)
\(\Leftrightarrow A\in\left\{\dfrac{1}{2};-\dfrac{1}{2}\right\}\)(1)
Vì 2y<3x<0 nên 3x-2y>0 và 3x+2y<0
hay \(A=\dfrac{3x-2y}{3x+2y}< 0\)(2)
Từ (1) và (2) suy ra \(A=-\dfrac{1}{2}\)
Vậy: \(A=-\dfrac{1}{2}\)