Rút gọn M=sin4\(\alpha\).(3-2sin2\(\alpha\)) + cos4\(\alpha.\left(3-2cos^2\alpha\right)\)
rút gọn biểu thức : a) A = \(\frac{sin2\alpha+sin3\alpha+sin4\alpha}{cos2\alpha+cos3\alpha+cos4\alpha}\) ; b) B = \(\frac{sin\alpha+2sin2\alpha+sin3\alpha}{cosa+2cos2\alpha+cos3a}\)
1.\(\)chứng minh hệ thức: \(\dfrac{sin\alpha+sin3\alpha+sin5\alpha}{cos\alpha+cos3\alpha+cos5\alpha}=tan3\alpha\)
2.rút gọn biểu thức: \(\dfrac{1+sin4\alpha-cos4\alpha}{1+cos4\alpha+sin4\alpha}\)
3. Tính \(96\sqrt{3}sin\dfrac{\pi}{48}cos\dfrac{\pi}{48}cos\dfrac{\pi}{24}cos\dfrac{\pi}{12}cos\dfrac{\pi}{6}\)
4. chứng minh rằng trong một △ABC ta có:
tanA + tanB + tanC = tanA tanB tanC (A,B,C cùng khác \(\dfrac{\pi}{2}\))
\(\dfrac{sina+sin5a+sin3a}{cosa+cos5a+cos3a}=\dfrac{2sin3a.cos2a+sin3a}{2cos3a.cos2a+cos3a}=\dfrac{sin3a\left(2cos2a+1\right)}{cos3a\left(2cos2a+1\right)}=\dfrac{sin3a}{cos3a}=tan3a\)
\(\dfrac{1+sin4a-cos4a}{1+sin4a+cos4a}=\dfrac{1+2sin2a.cos2a-\left(1-2sin^22a\right)}{1+2sin2a.cos2a+2cos^22a-1}=\dfrac{2sin2a\left(sin2a+cos2a\right)}{2cos2a\left(sin2a+cos2a\right)}=\dfrac{sin2a}{cos2a}=tan2a\)
\(96\sqrt{3}sin\left(\dfrac{\pi}{48}\right)cos\left(\dfrac{\pi}{48}\right)cos\left(\dfrac{\pi}{24}\right)cos\left(\dfrac{\pi}{12}\right)cos\left(\dfrac{\pi}{6}\right)=48\sqrt{3}sin\left(\dfrac{\pi}{24}\right)cos\left(\dfrac{\pi}{24}\right)cos\left(\dfrac{\pi}{12}\right)cos\left(\dfrac{\pi}{6}\right)\)
\(=24\sqrt{3}sin\left(\dfrac{\pi}{12}\right)cos\left(\dfrac{\pi}{12}\right)cos\left(\dfrac{\pi}{6}\right)=12\sqrt{3}sin\left(\dfrac{\pi}{6}\right)cos\left(\dfrac{\pi}{6}\right)\)
\(=6\sqrt{3}sin\left(\dfrac{\pi}{3}\right)=6\sqrt{3}.\dfrac{\sqrt{3}}{2}=9\)
\(A+B+C=\pi\Rightarrow A+B=\pi-C\Rightarrow tan\left(A+B\right)=tan\left(\pi-C\right)\)
\(\Rightarrow\dfrac{tanA+tanB}{1-tanA.tanB}=-tanC\Rightarrow tanA+tanB=-tanC+tanA.tanB.tanC\)
\(\Rightarrow tanA+tanB+tanC=tanA.tanB.tanC\)
Rút gọn :\(\dfrac{cos2\alpha+cos4\alpha+cos6\alpha}{sin2\alpha+sin4\alpha+sin6\alpha}\)
Rút gọn các biểu thức :
a) \(\dfrac{2\sin2\alpha-\sin4\alpha}{2\sin2\alpha+\sin4\alpha}\)
b) \(\tan\alpha\left(\dfrac{1+\cos^2\alpha}{\sin\alpha}-\sin\alpha\right)\)
c) \(\dfrac{\sin\left(\dfrac{\pi}{4}-\alpha\right)+\cos\left(\dfrac{\pi}{4}-\alpha\right)}{\sin\left(\dfrac{\pi}{4}-\alpha\right)-\cos\left(\dfrac{\pi}{4}-\alpha\right)}\)
d) \(\dfrac{\sin5\alpha-\sin3\alpha}{2\cos4\alpha}\)
Rút gọn biểu thức : A = \(\frac{tan\alpha-cot\alpha}{tan\alpha+cot\alpha}+cos2\alpha\)
\(B=\frac{1+sin4\alpha-cos4\alpha}{1+sin4\alpha+cos4\alpha}\)
\(C=\frac{3-4cos2\alpha+cos4\alpha}{3+4cos2\alpha+cos4\alpha}\)
\(D=\frac{sin^22\alpha+4sin^4\alpha-4sin^2\alpha.cos^2\alpha}{4-sin^22\alpha-4sin^2\alpha}\)
Nhân cả tử và mẫu của phân số chứa tan với \(sina.cosa\)
\(A=\frac{sin^2x-cos^2x}{sin^2x+cos^2x}+cos2x=sin^2x-cos^2x+cos2x=-cos2x+cos2x=0\)
\(B=\frac{1+sin4a-cos4a}{1+sin4a+cos4a}=\frac{1+2sin2a.cos2a-\left(1-2sin^22a\right)}{1+2sin4a.cos4a+2cos^22a-1}\)
\(B=\frac{2sin2a\left(sin2a+cos2a\right)}{2cos2a\left(sin2a+cos2a\right)}=\frac{sin2a}{cos2a}=tan2a\)
\(C=\frac{3-4cos2a+2cos^22a-1}{3+4cos2a+2cos^22a-1}=\frac{2\left(cos^22a-2cos2a-1\right)}{2\left(cos^22a+2cos2a+1\right)}\)
\(C=\frac{\left(cos2a-1\right)^2}{\left(cos2a+1\right)^2}=\frac{\left(1-2sin^2a-1\right)^2}{\left(2cos^2a-1+1\right)^2}=\frac{sin^4a}{cos^4a}=tan^4a\)
\(D=\frac{sin^22a+4sin^4a-\left(2sina.cosa\right)^2}{4-4sin^2a-sin^22a}=\frac{sin^22a+4sin^4a-sin^22a}{4\left(1-sin^2a\right)-\left(2sina.cosa\right)^2}=\frac{4sin^4a}{4cos^2a-4sin^2a.cos^2a}\)
\(=\frac{sin^4a}{cos^2a\left(1-sin^2a\right)}=\frac{sin^4a}{cos^2a.cos^2a}=\frac{sin^4a}{cos^4a}=tan^4a\)
rút gọn hệ thức :
a) A = \(\frac{\sin2\alpha+\sin3\alpha+\sin4\alpha}{\cos2\alpha+\cos3\alpha+\cos4\alpha}\)
b) B = \(\frac{\sin\alpha+2\sin2\alpha+\sin3\alpha}{\cos\alpha+2\cos2\alpha+\cos3\alpha}\)
rút gọn
a)A=\(\frac{1+2cos\alpha.sin\alpha}{cos^2\alpha-sin^2\alpha}\)
b)B=\(\left(1+\cot^2\alpha\right)\left(1-sin^2\alpha\right)\)-\(\left(1+\cot^2\alpha\right)\left(1-\cos^2\alpha\right)\)
c)C=\(\sin^6\alpha+\cos^6\alpha\)+\(3\sin^2\alpha.cos^2\alpha\)
\(F=\dfrac{\sin\alpha-2\sin\left(2\alpha\right)+\sin\left(3\alpha\right)}{\cos\alpha-3\cos\left(2\alpha\right)+\cos\left(3\alpha\right)}\)
Mn rút gọn giùm mình biểu thức này với. Mình cảm ơn ạ :<
Mẫu số là \(-3cos2a\) hay \(-2cos2a\) vậy bạn? -3 không hợp lý
Rút gọn các biểu thức :
a) \(\dfrac{\tan2\alpha}{\tan4\alpha-\tan2\alpha}\)
b) \(\sqrt{1+\sin\alpha}-\sqrt{1-\sin\alpha}\), với \(0< \alpha< \dfrac{\pi}{2}\)
c) \(\dfrac{3-4\cos2\alpha+\cos4\alpha}{3+4\cos2\alpha+\cos4\alpha}\)
d) \(\dfrac{\sin\alpha+\sin3\alpha+\sin5\alpha}{\cos\alpha+\cos3\alpha+\cos5\alpha}\)
a) \(\dfrac{tan2\alpha}{tan4\alpha-tan2\alpha}=\dfrac{sin2\alpha}{cos2\alpha}:\left(\dfrac{sin4\alpha}{cos4\alpha}-\dfrac{sin2\alpha}{cos2\alpha}\right)\)
\(=\dfrac{sin2\alpha}{cos2\alpha}:\dfrac{sin4\alpha cos2\alpha-sin2\alpha cos4\alpha}{cos4\alpha cos2\alpha}\)
\(=\dfrac{sin2\alpha}{cos2\alpha}.\dfrac{cos4\alpha.cos2\alpha}{sin2\alpha}=cos4\alpha\).
b) \(\sqrt{1+sin\alpha}-\sqrt{1-sin\alpha}=\sqrt{sin^2\dfrac{\alpha}{2}+2sin\dfrac{\alpha}{2}cos\dfrac{\alpha}{2}+cos^2\dfrac{\alpha}{2}}\)\(-\sqrt{sin^2\dfrac{\alpha}{2}-2sin\dfrac{\alpha}{2}cos\dfrac{\alpha}{2}+cos^2\dfrac{\alpha}{2}}\)
\(=\sqrt{\left(sin\dfrac{\alpha}{2}+cos\dfrac{\alpha}{2}\right)^2}-\sqrt{\left(sin\dfrac{\alpha}{2}-cos\dfrac{\alpha}{2}\right)^2}\)
\(=\left|sin\dfrac{\alpha}{2}+cos\dfrac{\alpha}{2}\right|-\left|sin\dfrac{\alpha}{2}-cos\dfrac{\alpha}{2}\right|\)
Vì \(0< \alpha< \dfrac{\pi}{2}\) nên \(0< \alpha< \dfrac{\pi}{4}\).
Trong \(\left(0;\dfrac{\pi}{4}\right)\) thì \(sin\dfrac{\alpha}{2}\) tăng dần từ 0 tới \(\dfrac{\sqrt{2}}{2}\) và \(cos\dfrac{\alpha}{2}\) giảm dần từ 1 tới \(\dfrac{\sqrt{2}}{2}\) nên \(\left|sin\dfrac{\alpha}{4}-cos\dfrac{\alpha}{4}\right|=-\left(sin\dfrac{\alpha}{4}-cos\dfrac{\alpha}{4}\right)=cos\dfrac{\alpha}{4}-sin\dfrac{\alpha}{4}\).
Vì vậy:
\(\left|sin\dfrac{\alpha}{2}+cos\dfrac{\alpha}{2}\right|-\left|sin\dfrac{\alpha}{2}-cos\dfrac{\alpha}{2}\right|\)
\(=sin\dfrac{\alpha}{4}+cos\dfrac{\alpha}{4}-\left(cos\dfrac{\alpha}{4}-sin\dfrac{\alpha}{4}\right)=2sin\dfrac{\alpha}{4}\).
c) \(\dfrac{3-4cos2\alpha+cos4\alpha}{3+4cos2\alpha+cos4\alpha}\)\(=\dfrac{4-4cos2\alpha+cos4\alpha-1}{4+4cos2\alpha+cos4\alpha-1}\)
\(=\dfrac{4\left(1-cos2\alpha\right)-2sin^22\alpha}{4\left(1+cos2\alpha\right)-2sin^22\alpha}\)
\(=\dfrac{4cos^2\alpha-2sin^22\alpha}{4sin^2\alpha-2sin^22\alpha}\)
\(=\dfrac{4cos^2\alpha-8sin^2\alpha cos^2\alpha}{4sin^2\alpha-8sin^2\alpha cos^2\alpha}\)
\(=\dfrac{4cos^2\alpha\left(1-2sin^2\alpha\right)}{4sin^2\alpha\left(1-2cos^2\alpha\right)}=cot^2\alpha.\dfrac{cos2\alpha}{-cot2\alpha}\)
\(=-cot^2\alpha\).
chứng minh:
\(\dfrac{2cos2\alpha-sin4\alpha}{2cos2\alpha+sin4\alpha}=tan^2\left(\dfrac{\pi}{4}-\alpha\right)\)