chứng minh:
\(\dfrac{1}{sin\alpha}+\dfrac{1}{sin2\alpha}+\dfrac{1}{sin4\alpha}+....+\dfrac{1}{sin2^n.\alpha}=\dfrac{cot\alpha}{2}-2cos2^n\alpha\)
Rút gọn :\(\dfrac{cos2\alpha+cos4\alpha+cos6\alpha}{sin2\alpha+sin4\alpha+sin6\alpha}\)
Rút gọn biểu thức : A = \(\frac{tan\alpha-cot\alpha}{tan\alpha+cot\alpha}+cos2\alpha\)
\(B=\frac{1+sin4\alpha-cos4\alpha}{1+sin4\alpha+cos4\alpha}\)
\(C=\frac{3-4cos2\alpha+cos4\alpha}{3+4cos2\alpha+cos4\alpha}\)
\(D=\frac{sin^22\alpha+4sin^4\alpha-4sin^2\alpha.cos^2\alpha}{4-sin^22\alpha-4sin^2\alpha}\)
Đơn giản các biểu thức sau:
G = \(cos\left(\alpha-5\pi\right)+sin\left(-\dfrac{3\pi}{2}+\alpha\right)-tan\left(\dfrac{\pi}{2}+\alpha\right).cot\left(\dfrac{3\pi}{2}-\alpha\right)\)
H = \(cot\left(\alpha-2\pi\right).cos\left(\alpha-\dfrac{3\pi}{2}\right)+cos\left(\alpha-6\pi\right)-2sin\left(\alpha-\pi\right)\)
Đơn giản biểu thức sau:
\(F=sin\left(\pi+\alpha\right)-cos\left(\dfrac{\pi}{2}-\alpha\right)+cot\left(2\pi-\alpha\right)+tan\left(\dfrac{3\pi}{2}-\alpha\right)\)
Đơn giản biểu thức sau:
\(G=Cos\left(\alpha-5\pi\right)+sin\left(-\dfrac{3\pi}{2}+\alpha\right)-tan\left(\dfrac{\pi}{2}+\alpha\right).cot\left(\dfrac{3\pi}{2}-\alpha\right)\)
.
Chứng minh rằng:
\(\sqrt{\dfrac{1+cos\alpha}{1-cos\alpha}}-\sqrt{\dfrac{1-cos\alpha}{1+cos\alpha}}=2cot\alpha\left(0< \alpha< \dfrac{\pi}{2}\right)\).
Chứng minh các đẳng thức sau:
a, \(\sin^4\alpha-\cos^4\alpha+1=2\sin^2\alpha\)
b,\(\dfrac{\sin^2\alpha+2\cos^2\alpha-1}{\cot^2\alpha}=\sin^2\alpha\)
c, \(\dfrac{1-\sin^2\alpha.\cos^2\alpha}{\cos^2\alpha}-\cos^2\alpha=\tan^2\alpha\)
d, \(\dfrac{\sin^2\alpha-\tan^2\alpha}{\cos^2\alpha-\cot^2\alpha}=\tan^6\alpha\)
e, \(\left(1+\cot\alpha\right)\sin^3\alpha+\left(1+\tan\alpha\right)\cos^3\alpha=\sin\alpha.\cos\alpha\)
f,\(\dfrac{\left(\sin\alpha+\cos\alpha\right)^2-1}{\cot\alpha-\sin\alpha.\cos\alpha}=2\tan^2\alpha\)
cho góc α thỏa mãn \(\dfrac{\pi}{2}\)<α<π và \(\sin\dfrac{\alpha}{2}\)= \(\dfrac{2}{\sqrt{5}}\) .Tính giá trị biểu thức A= \(\tan\left(\dfrac{\alpha}{2}-\dfrac{\pi}{4}\right)\)