Rút gọn biểu thức : A = \(\frac{tan\alpha-cot\alpha}{tan\alpha+cot\alpha}+cos2\alpha\)
\(B=\frac{1+sin4\alpha-cos4\alpha}{1+sin4\alpha+cos4\alpha}\)
\(C=\frac{3-4cos2\alpha+cos4\alpha}{3+4cos2\alpha+cos4\alpha}\)
\(D=\frac{sin^22\alpha+4sin^4\alpha-4sin^2\alpha.cos^2\alpha}{4-sin^22\alpha-4sin^2\alpha}\)
Bài 1: Rút gọn:
A= \(\dfrac{sin2\alpha+sin\alpha}{1+cos2\alpha+cos2\alpha}\)
B= \(\dfrac{4sin^2\alpha}{1-cos^2\dfrac{\alpha}{2}}\)
C= \(\dfrac{1+cos\alpha-sin\alpha}{1-cos\alpha-sin\alpha}\)
chứng minh:
\(\dfrac{1}{sin\alpha}+\dfrac{1}{sin2\alpha}+\dfrac{1}{sin4\alpha}+....+\dfrac{1}{sin2^n.\alpha}=\dfrac{cot\alpha}{2}-2cos2^n\alpha\)
Chứng minh:
A= \(Tan\alpha+Cot\alpha+Tan3\alpha+Cot\alpha=\dfrac{8Cos^22\alpha}{Sin6\alpha}\)
chứng minh:
\(\dfrac{2cos2\alpha-sin4\alpha}{2cos2\alpha+sin4\alpha}=tan^2\left(\dfrac{\pi}{4}-\alpha\right)\)
chứng minh rằng:
\(\frac{1-cos\alpha+cos2\alpha}{sin2\alpha-sin\alpha}\)= cotα ,với α ≠ kπ ( k ∈ Z) và α ≠ \(\pm\) \(\frac{\pi}{3}\) +l2π ( l ∈ Z)
Chứng minh:
\(\dfrac{1-cos\alpha-cos2\alpha+cos3\alpha}{1-2cos\alpha}=2sin^2\alpha\)
Rút gọn biểu thức
A= 4sin2α/1 - cos2(a/2)
B= (1 + cosα - sinα)/ (1- cosα - sinα)
cho \(\sin\alpha=\dfrac{\sqrt{5}}{3}\\ tinh\\ \cos2\alpha\sin\alpha\)