Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lương Huyền Ngọc
Xem chi tiết
ta kim linh dan
Xem chi tiết
lê thị hương giang
10 tháng 12 2017 lúc 19:16

Ta có :

\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

Do \(a+b=a^3+b^3\)

\(\Rightarrow a+b=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(\Rightarrow a^2-ab+b^2=1\)

\(a^2=b^2=a+b\) ,ta có :

\(a+b-ab=1\)

\(\Rightarrow a+b-ab-1=0\)

\(\Rightarrow\left(a-1\right)-\left(ab-b\right)=0\)

\(\Rightarrow\left(a-1\right)-b\left(a-1\right)=0\)

\(\Rightarrow\left(a-1\right)\left(1-b\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}a-1=0\\1-b=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)

Thay vaò biểu thức ,có :

\(1^{2015}+1^{2015}=1+1=2\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 10 2018 lúc 6:53

Từ (1) và (2) suy ra:   a 2 <  b 2

Ta có: a < b ⇒  a 3  <  a 2 b (3)

a < b ⇒ a b 2 <  b 3 (4)

a < b ⇒ a.a.b < a.b.b ⇒ a 2 b < a b 2  (5)

Từ (3), (4) và (5) ⇒  a 3  <  b 3

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 1 2017 lúc 18:13

Đặng Bá Mạnh Đẹp Trai
10 tháng 3 2021 lúc 15:53

A=1

chuẩn

Khách vãng lai đã xóa
Ngân Thương Nguyễn
Xem chi tiết
Trần Ái Linh
17 tháng 7 2021 lúc 22:01

VP `=(a+b)(a^2-ab+b^2)`

`=a^3-a^2b+ab^2+a^2b-ab^2+b^3`

`=a^3+(a^2b-a^2b)+(ab^2-ab^2)+b^3`

`=a^3+b^3`

.

VP `=(a-b)(a^2+ab+b^2)`

`=a^3+a^2b+ab^2-a^2b-ab^2-b^3`

`=a^3+(a^2b-a^2b)+(ab^2-ab^2)-b^3`

`=a^3-b^3`

Dân Chơi Đất Bắc=))))
17 tháng 7 2021 lúc 21:56

đúng rồi mà

Nguyễn Lê Phước Thịnh
17 tháng 7 2021 lúc 22:03

Ta có: \(a^3+b^3\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)\)

\(=\left(a+b\right)\left(a^2+2ab+b^2-3ab\right)\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)\)

Ta có: \(a^3-b^3\)

\(=\left(a-b\right)^3+3ab\left(a-b\right)\)

\(=\left(a-b\right)\left(a^2-2ab+b^2+3ab\right)\)

\(=\left(a-b\right)\left(a^2+ab+b^2\right)\)

yeens
Xem chi tiết
Trương Huy Hoàng
8 tháng 3 2021 lúc 22:03

Mk ms tìm được GTNN thôi!

Ta có: A = a3 + b3 = (a + b)(a2 + b2 - ab) = (a + b)(1 - ab)

Áp dụng BĐT Cô-si cho 2 số ko âm a2 và b2 ta có:

a2 + b2 \(\ge\) 2ab

\(\Leftrightarrow\) 1 \(\ge\) 2ab

\(\Leftrightarrow\) 1 - 2ab \(\ge\) 0

\(\Leftrightarrow\) 1 - ab \(\ge\) ab

\(\Rightarrow\) A \(\ge\) ab(a + b)

Dấu "=" xảy ra khi và chỉ khi a = b = \(\sqrt{0,5}\)

\(\Rightarrow\) A \(\ge\) 0,5 . 2\(\sqrt{0,5}\) = \(\sqrt{0,5}\)

Vậy ...

Chúc bn học tốt!

Nguyễn Việt Lâm
8 tháng 3 2021 lúc 23:18

\(a^2+b^2=1\Rightarrow\left\{{}\begin{matrix}0\le a\le1\\0\le b\le1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^3\le a^2\\b^3\le b^2\end{matrix}\right.\)

\(\Rightarrow a^3+b^3\le a^2+b^2=1\)

\(A_{max}=1\) khi \(\left(a;b\right)=\left(0;1\right);\left(1;0\right)\)

\(a^3+a^3+\left(\dfrac{1}{\sqrt{2}}\right)^3\ge\dfrac{3}{\sqrt{2}}a^2\)

\(b^3+b^3+\left(\dfrac{1}{\sqrt{2}}\right)^3\ge\dfrac{3}{\sqrt{2}}b^2\)

Cộng vế:

\(2\left(a^3+b^3\right)+\dfrac{\sqrt{2}}{2}\ge\dfrac{3}{\sqrt{2}}\left(a^2+b^2\right)=\dfrac{3\sqrt{2}}{2}\)

\(\Rightarrow a^3+b^3\ge\dfrac{\sqrt{2}}{2}\)

\(A_{min}=\dfrac{\sqrt{2}}{2}\) khi \(a=b=\dfrac{\sqrt{2}}{2}\)

Trương Huy Hoàng
8 tháng 3 2021 lúc 22:17

Ta có: A = a3 + b3 = (a + b)(a2 + b2 - ab) = (a + b)(1 - ab)

Áp dụng BĐT Cô-si cho 2 số (a + b)2 và 1 ko âm ta có:

\(\dfrac{\left(a+b\right)^2+1}{2}\ge a+b\)

\(\Leftrightarrow\) \(\dfrac{a^2+b^2+2ab+1}{2}\ge a+b\)

\(\Leftrightarrow\) \(\dfrac{2+2ab}{2}\ge a+b\)

\(\Leftrightarrow\) 1 + ab \(\ge\) a + b

\(\Leftrightarrow\) (1 - ab)(1 + ab) \(\ge\) A

\(\Leftrightarrow\) 1 - a2b2 \(\ge\) A

Dấu "=" xảy ra \(\Leftrightarrow\) ab = 1; a2 + b2 = 1

Khi đó: A \(\le\) 0

Vậy ...

Chúc bn học tốt!

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 11 2017 lúc 4:25

a) Rút gọn M = 279. Với m = 2017 giá trị của M = 279.

b) N = 8 a 3   -   27 b 3   =   ( 2 a ) 3   -   ( 3 b ) 3 = ( 2 a   -   3 b ) 3  + 3.2a.3b.(2a - 3b)

Thay a.b = 12;2a - 3b = 5 ta thu được N - 1205.

c) Cách 1: Từ a + b = 1 Þ a = 1 - b thế vào K.

Thực hiện rút gọn K, ta có kết quả K = 1.

Cách 2: Tìm cách đưa biêu thức về dạng a + b.

a 3   +   b 3   =   ( a   +   b ) 3  – 3ab(a + b) = 1 - 3ab;

6 a 2 b 2 (a + b) = 6 a 2 b 2  kết hợp với 3ab( a 2 + b 2 ) bằng cách đặt 3ab làm nhân tử chung ta được 3ab( a 2  + 2ab + b 2 ) = 3ab.

Thực hiện rút gọn K = 1.

Kwalla
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 11 2023 lúc 8:29

\(\left(a+b+c\right)^2=a^2+b^2+c^2\)

=>\(a^2+b^2+c^2+2\left(ab+bc+ac\right)=a^2+b^2+c^2\)

=>\(2\left(ab+bc+ac\right)=0\)

=>ab+bc+ac=0

\(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\)

=>\(\dfrac{\left(bc\right)^3+\left(ac\right)^3+\left(ab\right)^3}{\left(abc\right)^3}=\dfrac{3}{abc}\)

=>\(\left(bc\right)^3+\left(ac\right)^3+\left(ab\right)^3=3\left(abc\right)^2\)

\(\Leftrightarrow\left(ab+bc\right)^3-3\cdot ab\cdot bc\cdot\left(ab+bc\right)+\left(ac\right)^3=3\left(abc\right)^2\)

=>\(\left(-ac\right)^3-3\cdot ab\cdot bc\cdot\left(-ac\right)+\left(ac\right)^3-3\left(abc\right)^2=0\)

=>\(-a^3c^3+a^3c^3+3a^2b^2c^2-3a^2b^2c^2=0\)

=>0=0(đúng)

Nguyễn Thị Huyền
Xem chi tiết
Huy Phan
Xem chi tiết