Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
TrịnhAnhKiệt
Xem chi tiết
super saiyan vegeto
Xem chi tiết
super saiyan vegeto
13 tháng 11 2016 lúc 18:51

ta có a^3+5a= a^3-a+6a

                   = a(a^2-1)+6a

                    = a(a-1)(a+1)+6a

vì với a thuộc z thì a, a-1,a+1 là 3 số nguyên liên tiếp nên trong 3 số có 1 số chia hết cho 3 và ít nhất 1 số chia hết cho 2

=> a(a-1)(a+1) chia hết cho 2 và 3

mà (2;3)=1 nên a(a-1)(a+1) chia hết cho 6

lại có 6a chia hết cho 6 với mọi a thuộc z 

=> a(a-1)(a+1) +6a chia hết cho 6

hay a^3+5a chia hết cho 6

Ben 10
31 tháng 7 2017 lúc 19:50

cm bằng qui nạp 
thử n=1 ta có n^3+5n = 6 => dúng 
giả sử đúng với n =k 
ta cm đúng với n= k+1 
(k+1)^3+5(k+1) = k^3 +5k + 3k^2 +3k +6 
vì k^3 +5k chia hết cho 6, và 6 chia hết cho 6 nên ta cần cm 3k^2 +3k chia hết cho 6 <=> k^2 +k chia hết cho 2 
mà k(k +1) chia hết cho 2vì nếu k lẻ thì k+1 chẳn => chia hết 
nế k chẳn thì đương nhiên chia hết 
vậy đúng n= k+ 1 
theo nguyên lý qui nạp ta có điều phải chứng minh

viet luong
1 tháng 11 2018 lúc 20:16

\(a^3+5a=a\left(a^2+5\right)=a\left(a^2-25+30\right)=30a+a\left(a-5\right)\left(a+5\right)\)

Trần Hà Mi
Xem chi tiết
Ngọc
22 tháng 9 2016 lúc 19:47

Xét tổng:

(5a-4b)+4(2a+b)=5a-4b+8a+4b

<=>(5a-4b)+4(2a+b)=13a

Ta có : 13 chia hết cho 13 => 13a chia hết cho 13 với mọi a thuộc Z

=> [(5a-4b)+4(2a+b)] chia hết cho 13                 (1)

Ta có (5a-4b) chia hết cho 13 - Bài cho               (2)

Từ (1) ; (2) => 4(2a+b) chia hết cho 13

mà (4,13) =1

=> (2a+b) chia hết cho 14

Do đó nếu (5a-4b) chia hết cho 13 thì (2a+b) chia hết cho 13

Nghĩa Trần
Xem chi tiết
Lelemalin
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 8 2021 lúc 21:03

a: Ta có: \(a+b+c=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)

Ta có: a+b+c=0

\(\Leftrightarrow\left(a+b+c\right)^3=0\)

\(\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)

b: Ta có: \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Leftrightarrow a+b+c=0\)

Lấp La Lấp Lánh
21 tháng 8 2021 lúc 21:14

a) \(a^3+b^3+c^3=3abc\Leftrightarrow\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc=0\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)(đúng do a+b+c = 0)

Lấp La Lấp Lánh
21 tháng 8 2021 lúc 21:21

b) Ta có: \(\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ac\end{matrix}\right.\Rightarrow a^2+b^2+c^2\ge ab+ac+bc\)

\(ĐTXR\Leftrightarrow a=b=c\), mà a,b,c đôi một khác nhau => Đẳng thức không xảy ra\(\Rightarrow a^2+b^2+c^2>ab+ac+bc\Rightarrow a^2+b^2+c^2-ab-ac-bc>0\)

Ta có: \(a^3+b^3+c^3=3abc\Leftrightarrow\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc=0\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)\(\Rightarrow a+b+c=0\)( do (1))

Lelemalin
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 8 2021 lúc 21:29

a: Ta có: a+b+c=0

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)

Ta có: a+b+c=0

\(\Leftrightarrow\left(a+b+c\right)^3=0\)

\(\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)

b: Ta có: \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

\(\Leftrightarrow a+b+c=0\)

yoai0611
Xem chi tiết
Akai Haruma
30 tháng 1 2021 lúc 1:53

Bài 1:

$5a+8b\vdots 3$

$\Leftrightarrow 5a+8b-3(2b+2a)\vdots 3$

$\Leftrightarrow 5a+8b-6b-6a\vdots 3$

$\Leftrightarrow 2b-a\vdots 3$

 Ta có đpcm. 

 

Akai Haruma
30 tháng 1 2021 lúc 1:55

Bài 2. Bổ sung thêm điều kiện $n$ là số tự nhiên.

Ta có: $A=n(2n+7)(7n+7)=7n(2n+7)(n+1)$

Vì $n,n+1$ là 2 số tự nhiên liên tiếp nên sẽ tồn tại 1 số chẵn và 1 số lẻ

$\Rightarrow n(n+1)\vdots 2$

$\Rightarrow A=7n(n+1)(2n+7)\vdots 2(1)$

Mặt khác:

Nếu $n\vdots 3$ thì $A=7n(n+1)(2n+7)\vdots 3$

Nếu $n$ chia $3$ dư $1$ thì $2n+7$ chia hết cho $3$ 

$\Rightarrow A\vdots 3$

Nếu $n$ chia $3$ dư $2$ thì $n+1$ chia hết cho $3$

$\Rightarrow A\vdots 3$

Tóm lại $A\vdots 3(2)$

Từ $(1);(2)$ mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$

Nguyễn Yến Nhi
Xem chi tiết
Đoàn Ngọc Khánh Vy
30 tháng 8 2021 lúc 19:15

TH1: a, b, c có ít nhất 1 số chi hết cho 7

=> abc chia hết cho 7

=> Đpcm

TH2: a, b, c không có số nào chia hết cho 7

=> a, b, c chia 7 dư từ 1 đến 6

=> a^3, b^3, c^3 chia 7 dư 1 hoặc 6 (đã được CM)

(Bạn có thể tự CM bằng công thức sau: 

VD: a chia 7 dư r => a = 7k + r (với k là thương)

=> a^3 = (7k + r)^3 )

=> a^3, b^3, c^3 có ít nhất 2 số cùng số dư

=> (a^3 - b^3)(b^3 - c^3)(c^3 - a^3) có ít nhất 1 cặp số chia hết cho 7

=> Đpcm

Nguyễn Ngọc Bích
Xem chi tiết
soyeon_Tiểu bàng giải
25 tháng 6 2016 lúc 15:55

A = a3 - a

A = a.(a2 - 1)

A = a.(a-1).(a+1)

A = (a-1).a.(a+1)

Vì (a-1).a.(a+1) là tích 3 số tự nhiên liên tiếp nên (a-1).a.(a+1) chia hết cho 2 và 3

Do (2,3) = 1 => (a-1).a.(a+1) chia hết cho 6 => A chia hết cho 6

Câu A lm đc thì các câu B,C,D trở nên rất đơn giản

B = a3 - a + 6a

Do a3 - a chia hết cho 6, 6a chia hết cho 6

=> B chia hết cho 6

C = a3 + 11a

C = a3 - a + 12a

Do a3 - a chia hết cho 6, 12a chia hết cho 6

=> C chia hết cho 6

D = a3 - 19a

D = a3 - a - 18a

Do a3 - a chia hết cho 6, 18a chia hết cho 6

=> D chia hết cho 6

Nguyễn Ngọc Bích
25 tháng 6 2016 lúc 15:48

giúp mk nha mấy bn