Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Trúc Mai
Xem chi tiết
Hoàng Ngọc Tuyết Nhung
Xem chi tiết
Aeris
Xem chi tiết

\(5x^4+y^2-4x^2y-85=0\)

\(\left(2x^2\right)^2-2.2x^2.y+y^2+x^4=85\)

\(\left(2x^2-y\right)^2+x^4=85\)

Mà \(85=2^2+3^4=\left(-2\right)^2+\left(-3\right)^4\)

Vì phương trình nghiệm nguyên nên:

\(\left(2x^2-y\right)^2+x^4=2^2+3^4\)

\(\Rightarrow\orbr{\begin{cases}2x^2-y=2\\x=3\end{cases}}\)     hoặc      \(\orbr{\begin{cases}2x^2-y=3\\x=2\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}2.3^2-y=2\\x=3\end{cases}}\)   hoặc       \(\orbr{\begin{cases}2.2^2-y=3\\x=2\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}18-y=2\\x=3\end{cases}}\)      hoặc         \(\orbr{\begin{cases}8-y=3\\x=2\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}y=16\\x=3\end{cases}}\)                hoặc         \(\orbr{\begin{cases}y=5\\x=2\end{cases}}\)

Vậy..............

Trí Tô
Xem chi tiết
Đinh Nguyên Khánh
28 tháng 2 2016 lúc 10:08

Đặt \(x^2=a\ge0\)

\(PT\Leftrightarrow5a^2+y^2-4ay-85=0\)

        \(\Leftrightarrow y^2-4ay+5a^2-85=0\)

PT có nghiệm <=> \(\Delta'\ge0\)

                     \(\Leftrightarrow4a^2-\left(5a^2-85\right)\ge0\)

                     \(\Leftrightarrow-a^2+85\ge0\)

                     \(\Leftrightarrow0\le a^2\le85\)

                     \(\Leftrightarrow0\le x^4\le85\)

                     \(\Leftrightarrow0\le x\le\sqrt[4]{85}\)

                \(\Rightarrow x\in\left\{0;1;2;3\right\}\)

\(x=0\Rightarrow y=\sqrt{85}\left(loại\right)\)\(x=1\Rightarrow y=2+2\sqrt{21}hoặcy=2-2\sqrt{21}\left(loại\right)\) 

     3.  \(x=2\Rightarrow y=8-\sqrt{69}hoặcy=8+\sqrt{69}\left(loại\right)\)​  

     4.  \(x=3\Rightarrow y=16hoặcy=20\left(tm\right)\)

Vậy (x;y):(3;16),(3;20)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 10 2019 lúc 4:29

Đặt t = x 2 , t ≥ 0 , phương trình trở thành:

1 − 5 t 2 + 5 t + 10 1 + 5 = 0 *

Phương trình (*) có hệ số a .   c = 1 − 5   10   1 + 5 = − 40 < 0 ⇒ phương trình có hai nghiệm trái dấu

Vậy phương trình đã cho có 2 nghiệm phân biệt

Đáp án cần chọn là: D

Dung Vu
Xem chi tiết
Dung Vu
Xem chi tiết
ILoveMath
Xem chi tiết
Nguyễn An
Xem chi tiết
Trên con đường thành côn...
30 tháng 7 2021 lúc 21:16

undefined

Phía sau một cô gái
30 tháng 7 2021 lúc 21:16

      \(x+y+xy=x^2+y^2\)

⇔  \(2xy+2x+2y=2x^2+2y^2\)

\(\left(x^2+y^2-2xy\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)=2\)           

⇔  \(\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2=2\)

⇔ 

⇔ 

Các cặp số nguyên (x, y) thỏa mãn phương trình là : (0; 0); (2; 2); (0; 1); (2; 1); (1; 0);(1;2).

Nguyễn Phúc
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 5 2021 lúc 22:11

Do \(2x^2+x+1>0;\forall x\) nên pt tương đương:

\(y^2+1=\dfrac{x+5}{2x^2+x+1}\)

Ta có: \(6-\dfrac{x+5}{2x^2+x+1}=\dfrac{12x^2+5x+1}{2x^2+x+1}=\dfrac{12\left(x+\dfrac{5}{24}\right)^2+\dfrac{23}{48}}{2\left(x+\dfrac{1}{4}\right)^2+\dfrac{7}{8}}>0\) ; \(\forall x\)

\(\Rightarrow\dfrac{x+5}{2x^2+x+1}< 6\Rightarrow y^2+1< 6\)

\(\Rightarrow y^2< 5\) \(\Rightarrow y^2=\left\{0;1;4\right\}\)

- Với \(y^2=0\Rightarrow y=0\Rightarrow2x^2+x+1=x+5\Rightarrow x^2=2\) (ko tồn tại x nguyên thỏa mãn) \(\Rightarrow\) loại

- Với \(y^2=1\Rightarrow2\left(2x^2+x+1\right)=x+5\)

\(\Leftrightarrow4x^2+x-3=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{3}{4}\left(loại\right)\end{matrix}\right.\)

- Với \(y^2=4\Rightarrow5\left(2x^2+x+1\right)=x+5\)

\(\Leftrightarrow10x^2+4x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{2}{5}\left(loại\right)\end{matrix}\right.\)

Vậy pt có 4 cặp nghiệm nguyên: 

\(\left(x;y\right)=\left(-1;-1\right);\left(-1;1\right);\left(0;-2\right);\left(0;2\right)\)