Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phat Vo
Xem chi tiết
Ngọc Thị Nở
22 tháng 10 2017 lúc 19:40

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

callme_lee06
Xem chi tiết
JukJuk
Xem chi tiết
Lấp La Lấp Lánh
6 tháng 10 2021 lúc 11:06

a) Ta có: \(AB^2+AC^2=21^2+28^2=1225=35^2=BC^2\)

=> Tam giác ABC vuông tại A(Pytago đảo)

b) Xét tam giác ABC vuông tại A có:

\(sinB=\dfrac{AC}{BC}=\dfrac{28}{35}=\dfrac{4}{5}\)

\(sinC=\dfrac{AB}{BC}=\dfrac{21}{35}=\dfrac{3}{5}\)

c) Áp dụng HTL:

\(AB^2=BH.BC\)

\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{21^2}{35}=\dfrac{63}{5}\left(m\right)\)

\(CH=BC-BH=35-\dfrac{63}{5}=\dfrac{112}{5}\left(m\right)\)

d) Xét tam giác ABC vuông tại A có:

AM là trung tuyến

\(\Rightarrow AM=\dfrac{1}{2}BC=\dfrac{1}{2}.35=17,5\left(m\right)\)

Áp dụng HTL:

 \(AH^2=BH.HC\)

\(\Rightarrow AH=\sqrt{BH.HC}=\sqrt{\dfrac{63}{5}.\dfrac{112}{5}}=\dfrac{84}{5}\left(m\right)\)

Ta có: \(HM=BM-BH=\dfrac{1}{2}BC-BH\)(do AM là trung tuyến ứng với cạnh huyền)

\(\Rightarrow HM=\dfrac{1}{2}.35-\dfrac{63}{5}=\dfrac{49}{10}\left(m\right)\)

\(S_{AHM}=\dfrac{1}{2}.AH.HM=\dfrac{1}{2}.\dfrac{84}{5}.\dfrac{49}{10}=\dfrac{1029}{25}\left(m^2\right)\)

Vũ Vẫn Vu Vơ
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 4 2021 lúc 21:31

a) Xét ΔAEC vuông tại E và ΔADB vuông tại D có 

\(\widehat{BAD}\) chung

Do đó: ΔAEC\(\sim\)ΔADB(g-g)

Vũ Vẫn Vu Vơ
1 tháng 4 2021 lúc 21:33

Giupps vs

Vũ Vẫn Vu Vơ
1 tháng 4 2021 lúc 21:50

Giúp 

Phương Cát Tường
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 10 2023 lúc 10:21

3:

Xét ΔCEH vuông tại E và ΔCFA vuông tại F có

\(\widehat{FCA}\) chung

Do đó: ΔCEH đồng dạng với ΔCFA

=>CE/CF=CH/CA

=>\(CE\cdot CA=CH\cdot CF\)

Xét ΔCDH vuông tại D và ΔCFB vuông tại F có

\(\widehat{FCB}\) chung

Do đó: ΔCDH đồng dạng với ΔCFB

=>CD/CF=CH/CB

=>CD*CB=CH*CF

=>CD*CB=CH*CF=CE*CA

Xét ΔBDH vuông tại D và ΔBEC vuông tại E có

\(\widehat{EBC}\) chung

Do đó: ΔBDH đồng dạng với ΔBEC

=>BD/BE=BH/BC

=>\(BD\cdot BC=BH\cdot BE\)

Xét ΔBDA vuông tại D và ΔBFC vuông tại F có

góc DBA chung

Do đó: ΔBDA đồng dạng với ΔBFC

=>BD/BF=BA/BC

=>BD*BC=BF*BA

=>BD*BC=BF*BA=BH*BE

\(AH\cdot AD+BH\cdot BE=AF\cdot AB+BF\cdot BA=BA^2\)

\(AH\cdot AD+CH\cdot CF=AE\cdot AC+CE\cdot CA=AC^2\)

\(BH\cdot BE+CH\cdot CF=BD\cdot BC+CD\cdot CB=BC^2\)

Do đó: \(2\left(AH\cdot AD+BH\cdot BE+CH\cdot CF\right)=BA^2+AC^2+BC^2\)

=>\(AH\cdot AD+BH\cdot BE+CH\cdot CF=\dfrac{AB^2+AC^2+BC^2}{2}\)

Trần Thu Phương
Xem chi tiết
Trần Thùy Dương
8 tháng 8 2018 lúc 12:44

Tham khảo nha .

Vẽ  HD // AC . và HE // AB 

Ta có : \(HD//AC\)

và \(BH\perp AC\)( vì H là trực tâm của tam giác ABC )

\(\Rightarrow HD\perp BH\)

\(\Rightarrow DB>BH\)

( Cạnh đối diện với góc vuông)

Chứng minh tương tự như trên ta có :

\(EC//DH\)

\(\Rightarrow CH\perp AB\)

\(\Rightarrow CH\perp CE\)

\(\Rightarrow EC>CH\)(Cạnh đối góc vuông)

Mặt khác ta có :

\(HD//AE\)

\(HE//DA\)

\(\Rightarrow\)Tứ giác AEHD là hình bình hành 

\(\Rightarrow AD=HE\)

Xét tam giác AEH có :

\(HE+AE>AH\)

\(\Rightarrow AD+AE>AH\)

\(\Leftrightarrow AB+AC=AD+DB+AE+EC\)

\(=\left(AD+AE\right)+DB+EC>AH+BH+CH\)

Chứng minh tương tự ta có :

\(AB+BC>AH+BH+CH\)

\(AC+BC>AH+BH+CH\)

Do đó : \(2\left(AB+BC+AC\right)>3\left(AH+BH+CH\right)\)

\(\Rightarrow AB+BC+AC>\frac{3}{2}\left(AH+BH+CH\right)\)(đpcm)

Trần Thùy Dương
8 tháng 8 2018 lúc 13:01

A B C D E H

Thanh Tùng Triệu
Xem chi tiết
Hùng Tuấn
Xem chi tiết
Nhật Hoàng
Xem chi tiết
Hoàng Lê Bảo Ngọc
10 tháng 12 2016 lúc 20:54

Đặt \(sinB=x\) , \(sinC=y\) 

Áp dụng BĐT Cauchy : \(\left(x+y\right)^2\ge4xy\Leftrightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\Leftrightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

Đẳng thức xảy ra khi x = y , hay \(sinB=sinC\Rightarrow\widehat{B}=\widehat{C}\) , suy ra tam giác ABC cân.