b2 phân tích đa thức thành nhân tử
1) x - 9
2) x - 16
3) 9x - 1
4) x\(\sqrt{x}\)+ 1
Phân tích đa thức thành nhân tử
x^3+9x^2+27x+27
3\(\sqrt{3x^3}\)+18x^2+12\(\sqrt{3x}\)+8
\(\dfrac{1}{4}\)-x^2
a) \(x^3+9x^2+27x+27=\left(x+3\right)^3\)
b) \(3\sqrt{3x^3}+18x^2+12\sqrt{3x}+8=\left(\sqrt{3x}+2\right)^3\)
c) \(\dfrac{1}{4}-x^2=\left(\dfrac{1}{2}-x\right)\left(\dfrac{1}{2}+x\right)\)
phân tích đa thức thành nhân tử
1/ \(6x^2y-9xy^2+3xy\)
2/ \(\left(4-x\right)^2-16\)
3/ \(x^3+9x^2-4x-36\)
1: \(6x^2y-9xy^2+3xy\)
\(=3xy\left(2x-3y+1\right)\)
2: \(\left(4-x\right)^2-16\)
\(=\left(4-x-4\right)\left(4-x+4\right)\)
\(=-x\cdot\left(8-x\right)\)
3: \(x^3+9x^2-4x-36\)
\(=x^2\left(x+9\right)-4\left(x+9\right)\)
\(=\left(x+9\right)\left(x-2\right)\left(x+2\right)\)
1) \(6x^2y-9xy^2+3xy=3xy\left(2x-3y+1\right)\)
2) \(\left(4-x\right)^2-16=\left(4-x\right)^2-4^2=\left(4-x-4\right)\left(4-x+4\right)=-x\left(8-x\right)\)
3) \(x^3+9x^2-4x-36\\ =\left(x^3-2x^2\right)+\left(11x^2-22x\right)+\left(18x-36\right)\\ =x^2\left(x-2\right)+11x\left(x-2\right)+18\left(x-2\right)\\ =\left(x^2+11x+18\right)\left(x-2\right)\\ =\left[\left(x^2+2x\right)+\left(9x+18\right)\right]\left(x-2\right)\\ =\left[x\left(x+2\right)+9\left(x+2\right)\right]\left(x-2\right)\\ =\left(x+2\right)\left(x+9\right)\left(x-2\right)\)
Phân tích đa thức thành nhân tử x^16 + x^14 +1
Kết quả phân tích đa thức x2 + 2xy + y2 – 9x – 9y thành nhân tử là :
A.( x + y + 3) ( x + y – 3) (x + y )
B.( x + y – 9) (x + y )
C. ( x + y – 3) (x + y )
D. ( x – y – 9) (x – y )
Phân tích đa thức sau thành nhân tử : x2 -x-y2 -y, ta được kết quả là: A. (x+y)(x-y-1) B. (x-y)(x+y+1) C.(x+y)(x+y-1) D.(x-y)(x+y-1)
Phân tích đa thức sau thành nhân tử : x2 -4x-y2 +4 ta được kết quả là:
A .(x+2-y)(x+2+y)
B. (x-y+2)(x+y-2)
C. (x-2-y)(x-2+y)
D.(x-y-2)(x-y+2)
Đa thức 25 – a2 + 2ab + b2 + được phân tích thành:
A. (5 + a – b)(5 – a – b)
B. (5 + a + b)(5 – a – b)
C. (5 + a + b)(5 – a + b)
D. (5 + a – b)(5 – a + b)
bài 1: Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung
16) 2x+2y-x^2-xy
17)x^2-2x-4y^2-4y
18)x^2y-x^3-9y+9x
19)x^2.(x-1)+16.(1-x)
20)2x^2+3x-2xy-3y
16) 2x + 2y - x2 - xy = ( 2x + 2y ) - ( x2 + xy ) = 2( x + y ) - x( x + y ) = ( x + y )( 2 - x )
17) x2 - 2x - 4y2 - 4y = ( x2 - 4y2 ) - ( 2x + 4y ) = ( x - 2y )( x + 2y ) - 2( x + 2y ) = ( x + 2y )( x - 2y - 2 )
18) x2y - x3 - 9y + 9x = ( x2y - x3 ) - ( 9y - 9x ) = x2( y - x ) - 9( y - x ) = ( y - x )( x2 - 9 ) = ( y - x )( x - 3 )( x + 3 )
19) x2( x - 1 ) + 16( 1 - x ) = x2( x - 1 ) - 16( x - 1 ) = ( x - 1 )( x2 - 16 ) = ( x - 1 )( x - 4 )( x + 4 )
20) 2x2 + 3x - 2xy - 3y = ( 2x2 - 2xy ) + ( 3x - 3y ) = 2x( x - y ) + 3( x - y ) = ( x - y )( 2x + 3 )
20, \(2x^2+3x-2xy-3y=2x\left(x-y\right)+3\left(x-y\right)=\left(2x+3\right)\left(x-y\right)\)
16, \(2x+2y-x^2-xy=2\left(x+y\right)-x\left(x+y\right)=\left(2-x\right)\left(x+y\right)\)
17, \(x^2-2x-4y^2-4y=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)=\left(x-2y-2\right)\left(x+2y\right)\)
18, \(x^2y-x^3-9y+9x=-x\left(x^2-9\right)+y\left(x^2-9\right)=\left(-x-y\right)\left(x^2-9\right)=\left(y-x\right)\left(x-3\right)\left(x+3\right)\)
19, \(x^2\left(x-1\right)+16\left(1-x\right)=x^2\left(x-1\right)-16\left(x-1\right)=\left(x^2-16\right)\left(x-1\right)=\left(x-4\right)\left(x+4\right)\left(x-1\right)\)
Bài 1: Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung
16) 2x + 2y - x2 - xy
= ( 2x - x2 ) + ( 2y - xy )
= x ( 2 - x ) + y ( 2 - x )
= ( 2 - x ) ( x + y )
17) x2 - 2x - 4y2 - 4y
= ( x2 - 4y2 ) - ( 2x + 4y )
= ( x - 2y ) ( x + 2y ) - 2 ( x + 2y )
= ( x + 2y ) ( x - 2y - 2 )
18) x2y - x3 - 9y +9x
= ( 9x + x3 ) + ( x2y - 9y )
= x ( 9 + x2 ) + y ( x2 - 9 )
= x ( 9 + x2 ) - y ( 9 + x2 )
= ( 9 + x2 ) ( x - y )
= ( 3 - x ) ( 3 + x ) ( x - y )
19) x2 ( x - 1) + 16 (1 - x )
= x2 ( x - 1 ) - 16 ( x - 1 )
= ( x - 1 ) ( x2 - 16 )
= ( x - 1 ) ( x - 4 ) ( x + 4 )
20) 2x2 + 3x - 2xy - 3y
= 2x2 + 3x - ( 2xy + 3y )
= x ( 2x + 3 ) - y ( 2x + 3 )
= ( 2x + 3 ) ( x - y )
Phân tích đa thức thành nhân tử
(x2+x)2+9x2+9x+14
\(\left(x^2+x\right)^2+9x^2+9x+14\)
= \(\left(x^2+x\right)^2-4+\left(9x^2+9x+18\right)\)
= \(\left(x^2+x\right)^2-2^2+9\left(x^2+x+2\right)\)
= \(\left(x^2+x+2\right)\left(x^2+x-2\right)+9\left(x^2+x+2\right)\)
= \(\left(x^2+x+2\right)\left(x^2+x+7\right)\)
Chúc bạn làm bài tốt!!!!!!
ai giúp mình với . ko bik có sai đề không chứ minh giải miết không ra
cảm ơn bạn nha. VẬy mà minh lại không nghĩ ra chắc là do street
phân tích đa thức thành nhân tử:\(x^3+9x^2+6x-16\)
\(x^3+9x^2+6x-16\)
\(=x^3+x^2-2x+8x^2+8x-16\)
\(=x\left(x^2+x-2\right)+8\left(x^2+x-2\right)\)
\(=\left(x^2+x-2\right)\left(x+8\right)\)
\(=\left(x^2-x+2x-2\right)\left(x+8\right)\)
\(=\left[x\left(x-1\right)+2\left(x-1\right)\right]\left(x+8\right)\)
\(=\left(x-1\right)\left(x+2\right)\left(x+8\right)\)
phân tích đa thức thành nhân tử bằng phương pháp tách hạng tử
x^3 - 5x^2 + 8x - 4
x^3 - 9x^2 + 6x +16
a, = (x^3-x^2)-(4x^2-4x)+(4x-4)
= (x-1).(x^2-4x+4) = (x-1).(x-2)^2
b, = (x^3+x^2)-(10x^2+10x)+(16x+16)
= (x+1).(x^2-10x+16)
= (x+1).[ (x^2-2x)-(8x-16) ] = (x+1).(x-2).(x-8)
k mk nha
a)= (x^3-x^2)-(4x^2-4x)+(4x-4)
= (x-1).(x^2-4x+4)
= (x-1).(x-2)^2
b)= (x^3+x^2)-(10x^2+10x)+(16x+16)
= (x+1).(x^2-10x+16)
= (x+1).[ (x^2-2x)-(8x-16) ]
= (x+1).(x-2).(x-8)
P/s tham khảo nha
Phân tích đa thức thành nhân tử: 1, x^3+2x^2-6x-27 2, 9x^2+6x-4y^2-4y 3, 12x^3+4x^2-27x-9
1. \(x^3+2x^2-6x-27=\left(x-3\right)\left(x^2+5x+9\right)\)
2. \(9x^2+6x-4y^2-4y=\left(9x^2-4y^2\right)+\left(6x-4y\right)\)
\(=\left(3x-2y\right)\left(3x+2y\right)+2\left(3x-2y\right)=\left(3x-2y\right)\left(3x+2y+2\right)\)
3. \(12x^3+4x^2-27x-9=4x^2\left(3x+1\right)-9\left(3x+1\right)\)
\(=\left(3x+1\right)\left(x^2-\dfrac{9}{4}\right)=\left(x+\dfrac{1}{3}\right)\left(x+\dfrac{3}{2}\right)\left(x-\dfrac{3}{2}\right)\)
1) Ta có: \(x^3+2x^2-6x-27\)
\(=\left(x-3\right)\left(x^2+3x+9\right)+2x\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2+5x+9\right)\)
2: Ta có: \(9x^2+6x-4y^2-4y\)
\(=\left(3x-2y\right)\left(3x+2y\right)+2\left(3x-2y\right)\)
\(=\left(3x-2y\right)\left(3x+2y+2\right)\)