Bài 1: Cho tam giác ABC vuông tại A đường trung tuyến AM; gọi D là trung điểm của AB và E là điểm đối xứng với điểm M qua D
a) tứ giác AEBM là hình gì? cm
b)CM: AB vuông EM
c) Gọi F là trung điểm của AM. CM: E,F,C thẳng hàng
Bài 1: Cho tam giác ABC cân tại A có các đường trung tuyến BE và CD . Chứng minh rằng BE bằng CD
Bài 2: Cho tam giác ABC có đường trung tuyến BE và CD, biết BE = CD . Chứng minh rằng tam giác ABC cân tại A
Bài 3: Cho tam giác ABC chứng minh rằng a) Nếu tam giác ABC vuông góc tại A , có trung tuyến AM =1/2 BC
b) Nếu trung tuyến AM =1/2 BC thì tam giác ABC vuông góc tại A
Bài 1. Cho tam giác ABC cân tại A. Kẻ AM vuông góc với BC tại M
a) Chứng minh AM là trung tuyến của tam giác
b) Biết AB = 15 cm; BC = 12 cm. Tính độ dài đường trung tuyến AM.
Bài 1: Cho tam giác ABC vuông tại A ( AB>AC), AM là đường trung tuyến, kẻ đường thẳng vuông góc với AM tại M lần lượt cắt AB tại E, cắt AC tại F.
a) chứng minh: tam giác MBE đồng dạng tam giác MFC
b) Chứng minh: AE.AB=AF.AC
c) Đường cao AH của tam giác ABC cắt EF tại I. Chứng minh: \(\dfrac{S_{ABC}}{S_{AEF}}=\left(\dfrac{AM}{AI}\right)^2\)
Bài 2: Cho E= x2-2x+2022
a) Chúng minh: E>0 với mọi x
b) Tìm GTLN của: A=\(\dfrac{2020}{x^2-2x+2022}\)
Bài 7. Cho tam giác ABC vuông tại A (AB < AC), đường cao AH, trung tuyến AM. Biết rằng AH = 4,8cm,
AM = 5cm. Tính độ dài cạnh AC?
Bài 8. Đường trung tuyến ứng với cạnh huyền của một tam giác vuông dài 25cm. Tỉ số hai hình chiếu của
hai cạnh góc vuông trên cạnh huyền là 16 : 9. Tính độ dài hai cạnh góc vuông
Bài 4: Cho tam giác ABC vuông tại A có góc B= 30o, AB=6cm
a. Tính tam giác vuông ABC
b. Vẽ đường cao AH và trung tuyến AM của tam giác ABC. Tính diện tích tam giác AHM
a: Ta có: ΔABC vuông tại A
nên \(\widehat{B}+\widehat{C}=90^0\)
hay \(\widehat{C}=60^0\)
Xét ΔABC vuông tại A có
\(AC=AB\cdot\tan30^0\)
\(=2\sqrt{3}\left(cm\right)\)
\(\Leftrightarrow BC=4\sqrt{3}\left(cm\right)\)
1.Tam giác ABC vuông tại A có trung tuyến AM vuông góc với trung tuyến BN, cho AB = x. Tính AC, BC theo x?
2. Tam giác ABC vuông tại A có BD là đường phân giác, trung tuyến AM vuông góc BD. Cho BD = \(2\sqrt{3}x\)(x>0). Tính độ dài các cạnh của tam giác ABC?
Bài 1:
Cho tam giác ABC vuông tại A, đường trung tuyến AM. Trên tia đối của tia MA lấy điểm D sao cho MD = MA.
a) Tính số đo của góc ABD
b) Chứng minh: tam giác ABC= tam giác BAD
c) So sánh độ dài AM và BC
Bài 2: Cho tam giác ABC có BM và CN là hai đường trung tuyến cắt nhau tại G. Trên tia đối của tia MB lấy điểm E sao cho ME = MG. Trên tia đối của tia NC lấy điểm F sao cho NF = NG.
a) Chứng minh: EF = BC
b) Chứng minh: tam giác FAE= tam giác BGC
Bài 3: Cho tam giác ABC cân tại A, có AB = AC = 10cm; BC = 8cm. Gọi G là trọng tâm của tam giác ABC. Tính AG, BG, CG.
Thank youuuu những bạn giải quyết giúp mình bài tập :33
2:
a: Xét ΔABC có BM,CN là trung tuyến và G là giao của BM,CN
nên G là trọng tâm
=>BG=2GM và CG=2GN
=>BG=GE và CG=GF
=>G là trung điểm chung của BE và CF
=>BCEF là hình bình hành
=>BC=EF
b: Xét ΔFAE và ΔBGC có
FA=BG
AE=GC
FE=BC
=>ΔFAE=ΔBGC
Bài 1*: Cho tam giác ABC vuông cân tại C, trung tuyến AM. Qua C kẻ đường thẳng vuông góc với AM cắt AB tại D. Chứng minh AD= 2BD.
Bài 2: Cho tam giác ABC vuông tại A, đường cao AH, trung tuyến AM và đường phân giác
trong AD. Biết AB=21 cm BC = 35cm
a) Giải tam giác ABC. | b) Tính độ dài AH, HC, AM, AD |
a: Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=35^2-21^2=784\)
hay AC=28cm
Xét ΔBAC vuông tại A có
\(\sin\widehat{ABC}=\dfrac{AC}{BC}=\dfrac{4}{5}\)
nên \(\widehat{ABC}\simeq53^0\)
\(\Leftrightarrow\widehat{ACB}=37^0\)
Cho tam giác ABC vuông tại A. Đường trung tuyến AM. Chứng minh rằng AM=1/2BC
Trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền.
Nhưng mình chưa hc khái niệm đường trung tuyến nên thầy mới bắt chứng minh chứ