Bài 4: Cho \(\Delta\)ABC, AB=30cm, đường cao AH=24cm; đường trung tuyến AM=25cm (H nằm giữa B và M)
a, Tính BH,BC
b,cm: \(\Delta\)ABC vuông tại A
c, Từ B kẻ đường thẳng // AC cắt AH ở D
tính BD
cho tam giác ABC vuông tạiA , đường cao AH câu a biết AB=30cm,AH=24cm . tính AC,CH,BC,BH
Áp dụng định lí Pytago vào ΔBAH vuông tại H, ta được:
\(AH^2+HB^2=AB^2\)
\(\Leftrightarrow HB^2=AB^2-AH^2=30^2-24^2=324\)
hay HB=18(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow HC=\dfrac{AH^2}{HB}=\dfrac{24^2}{18}=32\left(cm\right)\)
Ta có: BC=HB+HC(H nằm giữa B và C)
nên BC=18+32=50(cm)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\LeftrightarrowÁC^2=BC^2-AB^2=50^2-30^2=1600\)
hay AC=40cm
Vậy: AC=40cm; CH=32cm; BC=50cm; BH=18cm
BÀI 1 : Cho \(\Delta ABC\) và đường cao AH. Kẻ \(HM⊥AB;HN⊥AC\).
a) CM: \(\Delta AMH\) đồng dạng với \(\Delta AHB\)
b) CM : \(AM\times AB=AN\times AC\)
c) tính MN biết AH=6cm; AM=4cm; AN=3cm; BC=15cm
BÀI 2: Cho \(\Delta ABC\) vuông tại A (AB<AC). Đường cao AH.
a) CM : \(BA^2=BH\times BC\)
b) tính AC biết AB=30cm; AH= 24cm
c) Trên AC lấy M sao cho CM=10cm. Trên BC lấy N sao cho CN=8cm. CM: \(\Delta CMN⊥\)
d) CM : \(CM\times CA=CN\times CB\)
không nà, mik giống hệt 2 bài này luôn , chịu câu 1c với câu 2c 2d
cho tam giác abc (a = 90 độ) có ab = 30cm đường cao ah = 24cm
a) tính bh
b) tính bc
xét \(\Delta ABH\)vg tại H có
AB2 = BH2 + AH2 ( Đ/Lí py - ta - go )
302 = BH2 + 242
BH2 = 324
BH= 18 cm
xét \(\Delta\)ABC vg tại A có AH \(\perp\)BC
AB2 = BH . BC ( hệ thức về cạnh và đường cao trong tg vg )
302 = 18 . BC
BC = 50 cm
#mã mã#
\(\Delta ABC\) vuông tại A. Đường cao AH = 24cm. AB:AC = 3:4. BH, CH = ?
Ta có: \(\dfrac{AB}{AC}=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{9}{16}\)
\(\Leftrightarrow HB=\dfrac{9}{16}\cdot HC\)
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HC^2\cdot\dfrac{9}{16}=24^2\)
\(\Leftrightarrow HC=32\left(cm\right)\)
hay HB=18(cm)
Cho \(\Delta ABC\) có cạnh AB =26cm, AC = 25cm, đường cao AH = 24cm. Tính độ dài cạnh BC.
ΔABH vuông tại H, theo định lí Py-ta-go ta có:
AB2 = AH2 + BH2
⇒ BH2 = AB2 - AH2
BH2 = 252 - 242
BH2 = 49
⇒ BH = 49−−√ = 7 (cm)
ΔACH vuông tại H, theo định lí Py-ta-go ta có:
AC2 = AH2 + CH2
CH2 = AC2 - AH2
CH2 = 262 - 242
CH2 = 100
⇒ CH = 100−−−√ = 10 (cm)
Mà BC = BH + CH
⇒ BC = 7 + 10 = 17 (cm)
Vậy BC = 17 (cm).
https://olm.vn/hoi-dap/detail/37669452145.html
Bạn xem ở link này nhé(mik gửi vào tin nhắn)
Chúc học tốt@@!!!!
\(\Delta ABH\)vuông tại H \(\Rightarrow BH^2+AH^2=AB^2\)
\(\Rightarrow BH^2+24^2=26^2\)\(\Rightarrow BH^2=26^2-24^2=100\)
\(\Rightarrow BH=10\left(cm\right)\)
\(\Delta AHC\)vuông tại H \(\Rightarrow AH^2+HC^2=AC^2\)
\(\Rightarrow HC^2+24^2=25^2\)\(\Rightarrow HC^2=25^2-24^2=49\)
\(\Rightarrow HC=7\left(cm\right)\)
\(\Rightarrow BC=HB+HC=10+7=17\left(cm\right)\)
Vậy \(BC=17cm\)
Cho \(\Delta ABC\) có cạnh AB =26cm, AC = 25cm, đường cao AH = 24cm. Tính độ dài cạnh BC.
Xét \(\Delta ABH\) có \(\widehat{AHB}=90^0\)
Theo đly Py-ta-go có:
\(AB^2=AH^2+BH^2\Rightarrow BH=\sqrt{AB^2-AH^2}=10cm\)
Làm tg tự vs \(\Delta ACH\) \(\Rightarrow CH=7cm\)
Vậy BC= BH+CH=10+7=17cm
Bài 2: Cho \(\Delta\)ABC vuông tại A, có AB = 4 cm, BC = 5 cm. Tính đường cao AH
\(Pytago:\)
\(AC^2=BC^2-AB^2\)
\(\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-4^2}=3\left(cm\right)\)
Áp dung HTL trong tam giác vuông ABC có :
\(AB\cdot AC=AH\cdot BC\\ \Leftrightarrow AH=\dfrac{AB\cdot AC}{BC}=\dfrac{3\cdot4}{5}=2.4\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-4^2=9\)
hay \(AC=\sqrt{9}=3cm\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AB\cdot AC=BC\cdot AH\)
\(\Leftrightarrow AH\cdot5=3\cdot4=12\)
hay AH=2,4cm
Vậy: AH=2,4cm
Cho tam giác ABC vuông tại A đường cao AH biết AB/AC=4/3,AH=24cm tính AB AC BC HB HC
AB/AC=4/3
=>HB/HC=16/9
=>HB/16=HC/9=k
=>HB=16k; HC=9k
AH^2=HB*HC
=>144k^2=24^2=576
=>k=2
=>HB=32cm; HC=18cm
AB=căn 32*50=40cm
AC=căn 18*50=30cm
giúp em các cao thủ
Cho tam giác ABC vuông tại B , đường cao BH . Gọi M , N là hình chiếu của H trên AB , BC .
a) Viết các hệ thức lượng trong tam giác vuông AHB
b)Cho BC = 30cm , BH = 24cm ,Tính CH , AC , AH , AB .
c) Chứng minh : BN.BC + BM.BA = 2MN2
a: \(AB^2=HB^2+HA^2\)
\(BM\cdot BA=BH^2\)
\(AM\cdot AB=AH^2\)
\(BH\cdot HA=HM\cdot BA\)
\(HM^2=MA\cdot MB\)
c: Áp dụng hệ thức lượng trong tam giác vuông vào ΔBHA vuông tại H có HM là đường cao ứng với cạnh huyền BA, ta được:
\(BM\cdot BA=BH^2\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔBHC vuông tại H có HN là đường cao ứng với cạnh huyền BC, ta được:
\(BN\cdot BC=BH^2\)
Xét tứ giác BNHM có
\(\widehat{NBM}=\widehat{BNH}=\widehat{BMH}=90^0\)
Do đó: BNHM là hình chữ nhật
Suy ra: BH=NM
Ta có: \(BM\cdot BA+BN\cdot BC\)
\(=BH^2+BH^2\)
\(=2\cdot NM^2\)
Bạn tự vẽ hình nha.
a) \(sinA=\dfrac{BH}{AB},cosA=\dfrac{AH}{AB},tanA=\dfrac{BH}{AH},cotA=\dfrac{AH}{BH}\\sin \widehat{ABH}=\dfrac{AH}{AB},cos\widehat{ABH}=\dfrac{BH}{AB},tan\widehat{ABH}=\dfrac{AH}{BH},cot\widehat{ABH}=\dfrac{BH}{AH}\)
b)Áp dụng định lí Py-ta-go vào tam giác BHC vuông tại H, ta được:
\(CH=\sqrt{BC^2-BH^2}=\sqrt{900-576}=18\left(cm\right)\)
Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông, ta được:
\(AC=\dfrac{BC^2}{HC}=\dfrac{900}{18}=50\left(cm\right)\)
\(AB=\dfrac{BH\cdot AC}{BC}=\dfrac{24\cdot50}{30}=40\left(cm\right)\)
\(AH=\dfrac{AB^2}{AC}=\dfrac{400}{50}=8\)(cm)
c) Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông, ta được:
BN.BC=\(BH^2\)
BM.BA=\(BH^2\)
Suy ra, BN.BC+BM.BA=2\(BH^2\)
Xét tứ giác BMHN có:
góc BMH = góc MBN = góc HNB = \(90^0\)
nên tứ giác BMHN là hình chữ nhật.
suy ra BH = MN .
Suy ra, BN.BC+BM.BA = 2.\(MN^2\)(đpcm)