Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Nhật
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 12 2020 lúc 11:48

Áp dụng định lí Pytago vào ΔBAH vuông tại H, ta được: 

\(AH^2+HB^2=AB^2\)

\(\Leftrightarrow HB^2=AB^2-AH^2=30^2-24^2=324\)

hay HB=18(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được: 

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow HC=\dfrac{AH^2}{HB}=\dfrac{24^2}{18}=32\left(cm\right)\)

Ta có: BC=HB+HC(H nằm giữa B và C)

nên BC=18+32=50(cm)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\LeftrightarrowÁC^2=BC^2-AB^2=50^2-30^2=1600\)

hay AC=40cm

Vậy: AC=40cm; CH=32cm; BC=50cm; BH=18cm

Eira
Xem chi tiết
Lê Thị Ngọc Ánh
10 tháng 4 2017 lúc 19:58

bạn nào giúp mình với 

Eira
10 tháng 4 2017 lúc 21:04

bạn cx k pk lm à?

Lê Thị Ngọc Ánh
10 tháng 4 2017 lúc 21:06

không nà, mik giống hệt 2 bài này luôn , chịu câu 1c với câu 2c 2d

dat
Xem chi tiết

xét \(\Delta ABH\)vg tại H có

AB2 = BH2 + AH2   ( Đ/Lí py - ta - go )

302  = BH2  + 242

BH2 = 324

BH= 18 cm

xét \(\Delta\)ABC vg tại A có AH \(\perp\)BC

AB2 = BH . BC ( hệ thức về cạnh và đường cao trong tg vg )

302 = 18 . BC

BC = 50 cm

#mã mã#

蝴蝶石蒜
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 9 2021 lúc 19:52

Ta có: \(\dfrac{AB}{AC}=\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{9}{16}\)

\(\Leftrightarrow HB=\dfrac{9}{16}\cdot HC\)

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow HC^2\cdot\dfrac{9}{16}=24^2\)

\(\Leftrightarrow HC=32\left(cm\right)\)

hay HB=18(cm)

Nữ hoàng sến súa là ta
Xem chi tiết

ΔABHΔABH vuông tại H, theo định lí Py-ta-go ta có:

AB2 = AH2 + BH2

 BH2 = AB2 - AH2

BH2 = 252 - 242

BH2 = 49

 BH = 4949 = 7 (cm)

ΔACHΔACH vuông tại H, theo định lí Py-ta-go ta có:

AC2 = AH2 + CH2

CH2 = AC2 - AH2

CH2 = 262 - 242

CH2 = 100

 CH = 100100 = 10 (cm)

Mà BC = BH + CH

​ BC = 7 + 10 = 17 (cm)

Vậy BC = 17 (cm).

https://olm.vn/hoi-dap/detail/37669452145.html

Bạn xem ở link này nhé(mik gửi vào tin nhắn)

Chúc học tốt@@!!!!

Nobi Nobita
8 tháng 9 2020 lúc 15:12

                             A B C H

\(\Delta ABH\)vuông tại H \(\Rightarrow BH^2+AH^2=AB^2\)

\(\Rightarrow BH^2+24^2=26^2\)\(\Rightarrow BH^2=26^2-24^2=100\)

\(\Rightarrow BH=10\left(cm\right)\)

\(\Delta AHC\)vuông tại H \(\Rightarrow AH^2+HC^2=AC^2\)

\(\Rightarrow HC^2+24^2=25^2\)\(\Rightarrow HC^2=25^2-24^2=49\)

\(\Rightarrow HC=7\left(cm\right)\)

\(\Rightarrow BC=HB+HC=10+7=17\left(cm\right)\)

Vậy \(BC=17cm\)

Khách vãng lai đã xóa
Đừng gọi tôi là Jung Hae...
Xem chi tiết
Hoàng Tử Hà
10 tháng 6 2019 lúc 17:51

Xét \(\Delta ABH\)\(\widehat{AHB}=90^0\)

Theo đly Py-ta-go có:

\(AB^2=AH^2+BH^2\Rightarrow BH=\sqrt{AB^2-AH^2}=10cm\)

Làm tg tự vs \(\Delta ACH\) \(\Rightarrow CH=7cm\)

Vậy BC= BH+CH=10+7=17cm

Thỏ Nghịch Ngợm
Xem chi tiết
Minh Nhân
19 tháng 1 2021 lúc 21:27

\(Pytago:\)

\(AC^2=BC^2-AB^2\)

\(\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-4^2}=3\left(cm\right)\)

Áp dung HTL trong tam giác vuông ABC có : 

\(AB\cdot AC=AH\cdot BC\\ \Leftrightarrow AH=\dfrac{AB\cdot AC}{BC}=\dfrac{3\cdot4}{5}=2.4\left(cm\right)\)

 

Nguyễn Lê Phước Thịnh
19 tháng 1 2021 lúc 21:36

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được: 

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-4^2=9\)

hay \(AC=\sqrt{9}=3cm\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AB\cdot AC=BC\cdot AH\)

\(\Leftrightarrow AH\cdot5=3\cdot4=12\)

hay AH=2,4cm

Vậy: AH=2,4cm

nguyễn hà phương
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 5 2023 lúc 14:56

AB/AC=4/3

=>HB/HC=16/9

=>HB/16=HC/9=k

=>HB=16k; HC=9k

AH^2=HB*HC

=>144k^2=24^2=576

=>k=2

=>HB=32cm; HC=18cm

AB=căn 32*50=40cm

AC=căn 18*50=30cm

thái
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 8 2021 lúc 21:29

a: \(AB^2=HB^2+HA^2\)

\(BM\cdot BA=BH^2\)

\(AM\cdot AB=AH^2\)

\(BH\cdot HA=HM\cdot BA\)

\(HM^2=MA\cdot MB\)

c: Áp dụng hệ thức lượng trong tam giác vuông vào ΔBHA vuông tại H có HM là đường cao ứng với cạnh huyền BA, ta được:

\(BM\cdot BA=BH^2\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔBHC vuông tại H có HN là đường cao ứng với cạnh huyền BC, ta được:

\(BN\cdot BC=BH^2\)

Xét tứ giác BNHM có 

\(\widehat{NBM}=\widehat{BNH}=\widehat{BMH}=90^0\)

Do đó: BNHM là hình chữ nhật

Suy ra: BH=NM

Ta có: \(BM\cdot BA+BN\cdot BC\)

\(=BH^2+BH^2\)

\(=2\cdot NM^2\)

Nguyen Minh Hieu
20 tháng 8 2021 lúc 21:40

Bạn tự vẽ hình nha.

a) \(sinA=\dfrac{BH}{AB},cosA=\dfrac{AH}{AB},tanA=\dfrac{BH}{AH},cotA=\dfrac{AH}{BH}\\sin \widehat{ABH}=\dfrac{AH}{AB},cos\widehat{ABH}=\dfrac{BH}{AB},tan\widehat{ABH}=\dfrac{AH}{BH},cot\widehat{ABH}=\dfrac{BH}{AH}\)

b)Áp dụng định lí Py-ta-go vào tam giác BHC vuông tại H, ta được:

\(CH=\sqrt{BC^2-BH^2}=\sqrt{900-576}=18\left(cm\right)\)

Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông, ta được:

\(AC=\dfrac{BC^2}{HC}=\dfrac{900}{18}=50\left(cm\right)\)

\(AB=\dfrac{BH\cdot AC}{BC}=\dfrac{24\cdot50}{30}=40\left(cm\right)\)

\(AH=\dfrac{AB^2}{AC}=\dfrac{400}{50}=8\)(cm)

c) Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông, ta được:

BN.BC=\(BH^2\)

BM.BA=\(BH^2\)

Suy ra, BN.BC+BM.BA=2\(BH^2\)

Xét tứ giác BMHN có:

góc BMH = góc MBN = góc HNB = \(90^0\)

nên tứ giác BMHN là hình chữ nhật.

suy ra BH = MN .

Suy ra, BN.BC+BM.BA = 2.\(MN^2\)(đpcm)