chứng minh: x6m+4+x6n+2+1\(⋮\)x2-x+1 (với \(\forall\)m, n \(\in\) N)
Cho hàm số f: \(Z^+\rightarrow Z^+\) thỏa mãn đồng thời các điều kiện :
1) \(f\left(n+1\right)>f\left(n\right)\) với \(\forall n\in Z^+\)
2) \(f\left(f\left(n\right)\right)=n+2000\) với \(\forall n\in Z^+\)
a) Chứng minh: \(f\left(n+1\right)=f\left(n\right)+1\)
b) Tính \(f\left(n\right)\)
Cho hàm số f: \(Z^+\rightarrow Z^+\) thỏa mãn đồng thời các điều kiện :
1) \(f\left(n+1\right)>f\left(n\right)\) với \(\forall n\in Z\)
2) \(f\left(f\left(n\right)\right)=n+2000\) với \(\forall n\in Z\)
a) Chứng minh: \(f\left(n+1\right)=f\left(n\right)+1\)
b) Tính \(f\left(n\right)\)
Chứng minh các mệnh đề sau:
\(a,1^2+2^2+...+n^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\) \(\forall n\in N\) *
\(b,1.2+2.3+...+n\left(n+1\right)=\dfrac{n\left(n+1\right)\left(n+2\right)}{3}\) \(\forall n\in N\) *
Chứng minh rằng với \(\forall m\le1\) thì \(x^2-2\left(3m-1\right)x+m+3\ge0\) với \(\forall x\in[1;+\infty)\)
Ta có: \(x^2-2\left(3m-1\right)x+m+3\ge0\)
\(\Leftrightarrow f\left(m\right)=\left(-6x+1\right)m+x^2+2x+3\ge0\)
Ta thấy \(f\left(m\right)\) là hàm số bậc nhất mà \(x\in[1;+\infty)\Rightarrow-6x+1< 0\)
\(\Rightarrow\) Hàm \(f\left(m\right)\) nghịch biến
Từ giả thiết \(m\le1\Rightarrow f\left(m\right)\ge f\left(1\right)\)
\(\Leftrightarrow x^2-2\left(3m-1\right)x+m+3\ge\left(x-2\right)^2\ge0\left(đpcm\right)\)
Chứng minh các mệnh đề sau
\(a,\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{n\left(n+1\right)}=\dfrac{n}{n+1}\) \(\forall n\in N\) *
\(b,1+\dfrac{1}{2^2}+...+\dfrac{1}{n^2}< 2-\dfrac{1}{n}\forall n\ge2\)
a: \(VT=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{n+1-1}{n+1}=\dfrac{n}{n+1}\)
Chứng minh rằng: \(A=\left(2^n-1\right)\left(2^n+1\right)⋮3\forall n\in N\)
\(\Rightarrow A=2^{2n}-1=4^n-1=\left(4-1\right)\left(4^{n-1}+4^{n-2}+...+4+1\right)=3\cdot\left(4^{n-1}+4^{n-2}+...+4+1\right)⋮3\forall n\in N\)
Chứng minh các mệnh đề sau
\(a,n^3+2n⋮3\) \(\forall n\in N\) *
\(b,13^n-1⋮6\forall n\in N\)*
a, Với n = 1 ta có 3 ⋮ 3.
Giả sử n = k ≥ 1 , ta có : k3 + 2k ⋮ 3 ( GT qui nạp).
Ta đi chứng minh : n = k + 1 cũng đúng:
(k+1)^3 + 2(k+1) = k^3 + 3k^2 + 3k + 1 + 2k + 2
= (k^3+2k) + 3(k^2+k+1)
Ta có : + (k^3+2k) ⋮ 3 ( theo gt trên)
+ 3(k^2+k+1) hiển nhiên chia hết cho 3
Vậy mệnh đề luôn chia hết cho 3.
b, Với n = 1 ta có 12 ⋮ 6.
Giả sử n = k ≥ 1 , ta có: 13k -1 ⋮ 6
Ta đi chứng minh : n = k+1 cũng đúng:
=> 13k.13 - 1 = 13(13k - 1) + 12.
Có: - 13(13k - 1) ⋮ 6 ( theo gt)
- 12⋮6 ( hiển nhiên)
> Vậy mệnh đề luôn đúng.
Chứng minh rằng số \(A=2^{2^{2n+1}}+3\notin P\)với \(\forall x\in N\)*?
\(2^{2n+1}=2\left(4^n\right)=2\left(3+1\right)^n=2\left(BS3+1\right)=BS3+2=3k+2\)
=>\(2^{2^{2n+1}}+3=2^{3k+2}+3=4\left(8\right)^k+3=4\left(7+1\right)^k+3=4\left(BS7+1\right)+3=BS7+7\)
chia hết cho 7
=> \(A\notin P\)
Chứng minh rằng với \(\forall n\in N;n>2\)thì \(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{n^2-1}{n}\)không là một số nguyên.