1. tim n
a,5n=625
b.12n=144
c.(n-2)2=(n-2)4
tìm số tự nhiên n biết rằng
3n=27
2n=625
12n=144
2n.16=128
5n:29=27
(2n+1)=27
3n=27<=>n=27:3=9(TM)
2n=625<=>n=625:2=32,5(KTM VÌ n LÀ SỐ TỰ NHIÊN)
12n=144<=>n=144:12=12(TM)
2n.16=128<=>n=128;16:2=4(TM)
5n:29=27<=>n=27X29:5=156,6((KTM VÌ n LÀ SỐ TỰ NHIÊN)
(2n+1)=27<=>2n=27-1<=>2n=26<=>n=26:2=13
bạn tự kết luân nha
TM:thỏa mãn
KTM không thỏa mãn
ủng hộ mk nha mk bị âm điểm
tim x biet
a)50<2^n<100
b)50<7^n<2500
2)a)3^n=27:5^n=625:12^n=144
b)2^n=16=128:3^n:9=27
c)(2^n+1)^3=27
CMR các phân số sau là phân số tối giản
a) \(A=\dfrac{n+1}{n+2}\)
b) \(B=\dfrac{n+1}{3n+4}\)
c) \(C=\dfrac{3n+2}{5n+3}\)
d) \(D=\dfrac{12n+1}{30n+2}\)
a) Gọi d là ƯCLN(n + 1; n + 2)
\(\Rightarrow n+1⋮d\)
\(n+2⋮d\)
\(\Rightarrow\left[\left(n+2\right)-\left(n+1\right)\right]⋮d\)
\(\Rightarrow\left(n+2-n-1\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\dfrac{n+1}{n+2}\) là phân số tối giản
b) Gọi d là ƯCLN(n + 1; 3n + 4)
\(\Rightarrow n+1⋮d\) và \(3n+4⋮d\)
Do \(n+1⋮d\Rightarrow3n+3⋮d\)
\(\Rightarrow\left[\left(3n+4\right)-\left(3n+3\right)\right]⋮d\)
\(\Rightarrow\left(3n+4-3n-3\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\dfrac{n+1}{3n+4}\) là phân số tối giản
c) Gọi d là ƯCLN(3n + 2; 5n + 3)
\(\Rightarrow3n+2⋮d\) và \(5n+3⋮d\)
Do \(3n+2⋮d\)
\(\Rightarrow5\left(3n+2\right)⋮d\)
\(\Rightarrow15n+10⋮d\) (1)
Do \(5n+3⋮d\)
\(\Rightarrow3\left(5n+3\right)⋮d\)
\(\Rightarrow15n+9⋮d\) (2)
Từ (1) và (2) \(\Rightarrow\left[\left(15n+10\right)-\left(15n+9\right)\right]⋮d\)
\(\Rightarrow\left(15n+10-15n-9\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\dfrac{3n+2}{5n+3}\) là phân số tối giản
d) Gọi d là ƯCLN(12n + 1; 30n + 2)
\(\Rightarrow12n+1⋮d\) và \(30n+2⋮d\)
Do \(12n+1⋮d\)
\(\Rightarrow5\left(12n+1\right)⋮d\)
\(\Rightarrow60n+5⋮d\) (3)
Do \(30n+2⋮d\)
\(\Rightarrow2\left(30n+2\right)⋮d\)
\(\Rightarrow60n+4⋮2\) (4)
Từ (3 và (4) \(\Rightarrow\left[\left(60n+5\right)-\left(60n+4\right)\right]⋮d\)
\(\Rightarrow\left(60n+5-60n-4\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\dfrac{12n+1}{30n+2}\) là phân số tối giản
a: Gọi d=ƯCLN(n+1;n+2)
=>n+2-n-1 chia hết cho d
=>1 chia hết cho d
=>d=1
=>PSTG
b: Gọi d=ƯCLN(3n+4;n+1)
=>3n+4-3n-3 chia hết cho d
=>1 chia hết cho d
=>d=1
=>PSTG
c: Gọi d=ƯCLN(3n+2;5n+3)
=>15n+10-15n-9 chia hết cho d
=>1 chia hết cho d
=>d=1
=>PSTG
d: Gọi d=ƯCLN(12n+1;30n+2)
=>60n+5-60n-4 chia hết cho d
=>1 chia hết cho d
=>d=1
=>PSTG
Tìm GTNN
A=|n-3| +2
C= 15n-2/5n-1
Tìm GTLN
A=4-(n+3)2
B= 3/4-2/3| n2 +1|
C= 12n+11/ 3n+2
Tìm GTNN
A=|n-3|+2
C=15n-2/5n-1
Tìm GTNN
A= 4-(n+3)2
B= 3/4-3/2| n2 +1|
C=12n+11/3n+2
B1: Tìm giá trị nhỏ nhất của:
a) A = |n - 3| + 2
+) Có: |n - 3| ≥ 0 với mọi n
=> |n - 3| + 2 ≥ 0 + 2 với mọi n
=> A ≥ 2 với mọi n
Dấu "=" xảy ra <=> |n - 3| = 0 <=> n - 3 = 0 <=> n = 3
Vậy Amin = 2 <=> n = 3
b) \(C=\frac{15n-2}{5n-1}=\frac{3\left(5n-1\right)+1}{5n-1}=3+\frac{1}{5n-1}\)
Cmin <=> \(\frac{1}{5n-1}min\)\(\Rightarrow\hept{\begin{cases}\frac{1}{5n-1}< 0\\5n-1\text{ max}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}5n-1< 0\\5n\text{ max}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}n< \frac{1}{5}\\n\text{ max}\end{cases}}\)
(tớ nghĩ bài này thiếu điều kiện n thuộc Z)
Mà \(n\inℤ\)
\(\Rightarrow n=0\)
\(\Rightarrow C_{min}=-\frac{2}{-1}=2\text{ }\Leftrightarrow\text{ }n=0\)
Vậy Cmin = 2 <=> n = 0
B2: Tìm giá trị lớn nhất của:
a) A = 4 - (n + 3)2
+) Có: -(n + 3)2 ≤ 0 với mọi n
=> 4 - (n + 3)2 ≤ 4 với mọi n
=> A ≤ 4 với mọi n
Dấu "=" xảy ra <=> -(n + 3)2 = 0 <=> n + 3 = 0 <=> n = -3
Vậy Amax = 4 <=> n = -3
b) \(\frac{3}{4}-\frac{3}{2\left|n^2+1\right|}\)
+) Có n2 ≥ 0 với mọi n => n2 + 1 ≥ 0 với mọi n
=> 2|n2 + 1| ≥ 0 với mọi n
\(\Rightarrow-\frac{3}{2\left|n^2+1\right|}\le0\text{ }\forall n \)\(\Rightarrow\frac{3}{4}-\frac{3}{2\left|n^2+1\right|}\le\frac{3}{4}\text{ }\forall n\)
Dấu "=" xảy ra <=> n2 = 0 <=> n = 0
Vậy Bmax = \(\frac{3}{4}\) <=> n = 0
c) \(C=\frac{12n+11}{3n+2}=\frac{4\left(3n+2\right)+3}{3n+2}=4+\frac{3}{3n+2}\)
\(\Rightarrow C_{max}\text{ }\Leftrightarrow\text{ }\frac{3}{3n+2}\text{ }\text{m}\text{a}\text{x}\)
\(\Rightarrow\hept{\begin{cases}\frac{3}{3n+2}>0\\3n+2\text{ }min\end{cases}}\)\(\Rightarrow\hept{\begin{cases}3n+2>0\\n\text{ m}\text{in}\end{cases}}\text{ }\Rightarrow\hept{\begin{cases}n>-\frac{2}{3}\\n\text{ }\text{m}\text{i}\text{n}\end{cases}}\)
Mà n thuộc Z => n = 0
\(\Rightarrow C_{max}=\frac{11}{2}\text{ }\Leftrightarrow\text{ }n=0\)
Vậy Cmax = 5,5 <=> n = 0
bai1 : tim so tu nhien N de
a: n+8 chia het cho n
b: 143-12n chia het cho n (n<12)
c: n+9 chia het cho n+4
đ: 3n+40 chia hết cho n+4
e: 5n+2 chia het cho n+9
a.n chia het cho n nen 8 chia het cho n => n=1,2,4,8
b,12n chia het n nen 143 chia het n=> n=1,11,13,143
c)n+9=n+4+5=> 5 chia het n+4
n+4 1 5
n ko 1
d.3(n+4) +40-12=3(n+4)+28 nen 28 chia het n+4
e.5(n+2)+9-10=5(n+2)-1 nen 1 chia het n+9
tik minh nha
Chứng minh rằng các số sau nguyên tố cùng nhau ( n thuộc N)
a) 5n+3; 3n+2
b) 4n+3; 6n+4
c) 12n+5; 5n+2
a, Gọi ƯCLN(5n + 3, 3n + 2) = d
Ta có: \(\hept{\begin{cases}5n+3⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+9⋮d\\15n+10⋮d\end{cases}}}\)
=> 15n + 10 - (15 n + 9) chia hết cho d
=> 1 chia hết cho d
=> d thuộc {1;-1}
Vậy...
b, Gọi ƯCLN(4n + 3, 6n + 4) = d
Ta có: \(\hept{\begin{cases}4n+3⋮d\\6n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}12n+9⋮d\\12n+8⋮d\end{cases}}}\)
=> 12n + 9 - (12n + 8) chia hết cho d
=> 1 chia hết cho d
=> d thuộc {1;-1}
Vậy...
c, Gọi ƯCLN(12n + 5, 5n + 2) = d
Ta có: \(\hept{\begin{cases}12n+5⋮d\\5n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}60n+25⋮d\\60n+24⋮d\end{cases}}}\)
=> 60n + 25 - (60n + 24) chia hết cho d
=> 1 chia hết cho d
=> d = {1;-1}
Vậy...
Gọi d là ƯCLN của 5n + 3 và 3n + 2
Khi đó : 5n + 3 chia hết cho d , 3n + 2 chia hết cho d
=> 15n + 9 chia hết cho d , 15n + 10 chia hết cho d
=> 15n + 10 - 15n - 9 = 1 chia hết cho d
=> d = 1
Vậy 5n + 3 và 3n + 2 nguyên tố cùng nhau .
Gọi ƯCLN của 5n +3 và 3n +2 là d
Ta có:
\(5n+3⋮d\)\(\Rightarrow15n+9⋮d\)
\(3n+2⋮d\)\(\Rightarrow15n+10⋮d\)
Vây 1 \(⋮d=>d=1\)
Vậy các số trên nguyên tố cùng nhau.
\(b,4n+3;6n+4\)
Gọi ƯCLN của 4n+3 và 6n+4 là d
Ta cs:
\(4n+3⋮d\Rightarrow12n+9⋮d\)
\(6n+4⋮d\Rightarrow12n+8⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy các số trên nguyên tố cùng nhau.
TÌM n thuộc N sao cho
a)7n+3 chia hết n
b)12n-1 chia hết 4n+2
c)10n+5 chia hết 5n-1
\(a,\frac{7n+3}{n}\)
\(\Rightarrow3⋮n\)Vì \(7n⋮n\)
\(\Rightarrow n\inƯ\left(3\right)=\left(1;3\right)\)
\(b,\frac{12n-1}{4n+2}\)
\(=\frac{12n+6-7}{4n+2}\)
\(=\frac{3\left(4n+2\right)}{4n+2}-\frac{7}{4n+2}\)
Để \(12n-1⋮4n+2\)
\(\Rightarrow7⋮4n+2\)
\(\Rightarrow4n+2\inƯ\left(7\right)=\left(1;7;-1;-7\right)\)
CMR các phân số sau tối giản với mọi số tự nhiên n
a)\(\dfrac{2n+1}{5n+2}\) b) \(\dfrac{12n+1}{30n+2}\)
c) \(\dfrac{2n+1}{2n^2-1}\) d) \(\dfrac{n^3+2n}{n^4+3n^2+1}\)
a: Gọi d=UCLN(2n+1;5n+2)
\(\Leftrightarrow10n+5-10n-4⋮d\)
\(\Leftrightarrow1⋮d\)
=>d=1
=>UCLN(2n+1;5n+2)=1
hay 2n+1/5n+2 là phân số tối giản
b: Gọi d=UCLN(12n+1;30n+2)
\(\Leftrightarrow5\left(12n+1\right)-2\left(30n+2\right)⋮d\)
\(\Leftrightarrow60n+5-60n-4⋮d\)
\(\Leftrightarrow1⋮d\)
=>d=1
=>UCLN(12n+1;30n+2)=1
=>12n+1/30n+2là phân số tối giản
c: Gọi \(d=UCLN\left(2n+1;2n^2-1\right)\)
\(\Leftrightarrow n\left(2n+1\right)-2n^2+1⋮d\)
\(\Leftrightarrow n+1⋮d\)
\(\Leftrightarrow2n+2⋮d\)
\(\Leftrightarrow2n+2-2n-1⋮d\)
\(\Leftrightarrow1⋮d\)
=>d=1
=>\(\dfrac{2n+1}{2n^2-1}\) là phân số tối giản