tìm x
a, x^3 - 1/9x =0
Tìm x:
a) x3-9x2+27x-27=0
b) x3-25x=0
c)9x2-1=0
a) x3-9x2+27x-27=0
<=>(x-3)3=0
<=>x-3=0
<=>x=3
b) x3-25x=0
<=>x.(x2-25)=0
<=>x.(x-5)(x+5)=0
<=>x=0 hoặc x-5=0 hoặc x+5=0
<=>x=0 hoặc x=5 hoặc x=-5
c)9x2-1=0
<=>(3x-1)(3x+1)=0
<=>3x-1=0 hoặc 3x+1=0
<=>x=1/3 hoặc x=-1/3
a, x^3 - 9x^2 + 27x - 27 = 0
=> ( x - 3)^3 = 0
=> x - 3 = 0
=> x = 3
b, x^3 - 25x = 0
=> x(x^2 - 25) = 0
=> x(x-5)(x + 5) = 0
=> x =0 hoặc x - 5 = 0 hoặc x + 5 = 0
=> x= 0 hoặc x =5 hoặc x = -5
c, 9x^2 - 1 = 0
=> (3x)^2 - 1^2 = 0
=> ( 3x- 1)(3x+ 1) = 0
=> 3x - 1 = 0 hoặc 3x + 1 = 0
=> x = 1/3 hoặc x = -1/3
tìm x, biết
a) (x+5).9x-4)=0
b) (x-1).(x-3)=0
c) (3-x).(x-3)=0
d) x.(x+1)=0
a) (x+5)(x-4)=0
<=> x+5=0 hoặc x-4=0
<=> x=-5 hoặc x=4
b) (x-1)(x-3)=0
<=> x-1=0 hoặc x-3=0
<=> x=1 hoặc x=3
a) (x+5).(9x-4)=0
=> x+5=0 hoặc 9x-4=0
Nếu x+5=0: x=0-5=-5
Nếu 9x-4=0: 9x=0+4=4
x=4/9
b) (x-1).(x-3)=0
=> x-1=0 hoặc x-3=0
Nếu x-1=0: x=0+1=1
Nếu x-3=0: x=0+3=3
c) (3-x).(x-3)=0
=> 3-x=0 hoặc x-3=0
Nếu 3-x=0: x=3-0=0
Nếu x-3=0: x=0+3=3
d) x.(x+1)=0
=> x=0 hoặc x+1=0
Nếu x+1=0: x=0-1=-1
\(a,\left(x+5\right)\left(9x-4\right)=0\)
<=>\(\orbr{\begin{cases}x+5=0\\9x-4=0\end{cases}}\)
<=>\(\orbr{\begin{cases}x=-5\\x=\frac{4}{9}\end{cases}}\)
\(b,\left(x-1\right)\left(x-3\right)=0\)
<=>\(\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}}\)
<=>\(\orbr{\begin{cases}x=1\\x=3\end{cases}}\)
\(c,\left(3-x\right)\left(x-3\right)=0\)
<=>\(\orbr{\begin{cases}3-x=0\\x-3=0\end{cases}}\)
<=>\(\orbr{\begin{cases}x=3\\x=3\end{cases}}\)
\(d,x\left(x+1\right)=0\)
<=>\(\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\)
<=>\(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
1.Tìm x
a/ x(2x - 1) - 6x + 3 = 0
b/ x^2 (x + 1) - 9x - 9=0
a) \(x\left(2x-1\right)-6x+3=0\)
\(\Leftrightarrow x\left(2x-1\right)-3\left(2x-1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\2x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{1}{2}\end{cases}}\)
b) \(x^2\left(x+1\right)-9x-9=0\)
\(\Leftrightarrow x^2\left(x+1\right)-9\left(x+1\right)=0\)
\(\Leftrightarrow\left(x^2-9\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x^2-9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\pm\sqrt{9}=\pm3\end{cases}}\)
a) x(2x - 1) - 6x + 3 = 0
=> x(2x - 1) - 3(2x - 1) = 0
=> (x - 3)(2x - 1) = 0
=> \(\orbr{\begin{cases}x-3=0\\2x-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=3\\x=\frac{1}{2}\end{cases}}\)
b) x2(x + 1) - 9(x + 1) = 0
=> (x2 - 9)(x + 1) = 0
=> \(\orbr{\begin{cases}x^2-9=0\\x+1=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=\pm3\\x=-1\end{cases}}\)
bài 2; tìm x
a, 5x ( x - 1 ) + ( x + 17 ) = 0
b, 3x ( x - 3 ) mũ 2 - 3x ( x + 3 ) mũ 2 = 0
c, 7 - 9x + 2x mũ 2 = 0
d, 7 - 9x + 2x mũ 2 = 0
a, \(5x\left(x-1\right)+\left(x+17\right)=0\)
\(\Leftrightarrow5x^2-5x+x+17=0\Leftrightarrow5x^2-4x+17=0\)
\(\Leftrightarrow5\left(x^2-\frac{4}{5}x\right)+17=0\Leftrightarrow5\left(x^2-2.\frac{2}{5}x+\frac{4}{25}-\frac{4}{25}\right)+17=0\)
\(\Leftrightarrow5\left(x-\frac{2}{5}\right)^2-\frac{4}{5}+17=0\Leftrightarrow5\left(x-\frac{2}{5}\right)^2+81\ge81>0\)
Vậy pt vô nghiệm
b, \(3x\left(x-3\right)^2-3x\left(x+3\right)^2=0\)
\(\Leftrightarrow3x\left[\left(x-3\right)^2-\left(x+3\right)^2\right]=0\)
\(\Leftrightarrow3x\left(x-3-x-3\right)\left(x-3+x+3\right)=0\Leftrightarrow x.2x=0\Leftrightarrow x=0\)
c, \(2x^2-9x+7=0\Leftrightarrow2x^2-7x-2x+7=0\)
\(\Leftrightarrow x\left(2x-7\right)-\left(2x-7\right)=0\Leftrightarrow\left(x-1\right)\left(2x-7\right)=0\Leftrightarrow x=1;x=\frac{7}{2}\)
Trả lời:
a, \(5x\left(x-1\right)+\left(x+17\right)=0\)
\(\Leftrightarrow5x^2-5x+x+17=0\)
\(\Leftrightarrow5x^2-4x+17=0\)
\(\Leftrightarrow5\left(x^2-\frac{4}{5}x+\frac{17}{5}\right)=0\)
\(\Leftrightarrow x^2-\frac{4}{5}x+\frac{17}{5}=0\)
\(\Leftrightarrow x^2-2.x.\frac{2}{5}+\frac{4}{25}+\frac{81}{25}=0\)
\(\Leftrightarrow\left(x-\frac{2}{5}\right)^2+\frac{81}{25}=0\)
Vì \(\left(x-\frac{2}{5}\right)^2+\frac{81}{25}\ge\frac{81}{25}>0\forall x\)
nên pt vô nghiệm
b, \(3x\left(x-3\right)^2-3x\left(x+3\right)^2=0\)
\(\Leftrightarrow3x\left[\left(x-3\right)^2-\left(x+3\right)^2\right]=0\)
\(\Leftrightarrow3x\left(x-3-x-3\right)\left(x-3+x+3\right)=0\)
\(\Leftrightarrow3x.\left(-9\right).2x=0\)
\(\Leftrightarrow-54x^2=0\)
\(\Leftrightarrow x^2=0\)
\(\Leftrightarrow x=0\)
Vậy x = 0 là nghiệm của pt.
c, \(7-9x+2x^2=0\)
\(\Leftrightarrow2x^2-7x-2x+7=0\)
\(\Leftrightarrow x\left(2x-7\right)-\left(2x-7\right)=0\)
\(\Leftrightarrow\left(2x-7\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-7=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=1\end{cases}}}\)
Vậy x = 7/2; x = 1 là nghiệm của pt.
d, trùng ý c
tìm x
a) x^3-9x+7x^2-63=0
b) x^3-6x^2+9x=0
\(x^3-9x+7x^2-63=0\)
\(\Rightarrow\left(x^3+7x^2\right)-9x-63=0\)
\(\Rightarrow x^2\left(x+7\right)-9\left(x+7\right)=0\)
\(\Rightarrow\left(x^2-9\right)\left(x+7\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-9=0\\x+7=0\end{cases}\Rightarrow\orbr{\begin{cases}x^2=9\\x=-7\end{cases}\Rightarrow}\orbr{\begin{cases}x=\pm3\\x=-7\end{cases}}}\)
Vậy ...
x3−9x+7x2−63=0x3−9x+7x2−63=0
⇒(x3+7x2)−9x−63=0⇒(x3+7x2)−9x−63=0
⇒x2(x+7)−9(x+7)=0⇒x2(x+7)−9(x+7)=0
⇒(x2−9)(x+7)=0⇒(x2−9)(x+7)=0
⇒{x2−9=0x+7=0⇒{x2=9x=−7⇒{x=±3x=−7⇒{x2−9=0x+7=0⇒{x2=9x=−7⇒{x=±3x=−7
Vậy ...
Tìm x
a) (2x - 3)(x^2 + 2) - 2(x + 1)^3 - 9x^2 = -5
b) 3(x - 2) - x^2 + 4 = 0
c) x^3 - 5x^2 - 10x= -50
d) x^3 + 9x= 6x^2
e) 2x^2 - 5x + 3 = 0
f) x^2 - x - 2= 0
\(A=\frac{x^3-9x}{x^4-x^3+x-1}\). Tìm x để A > 0; < 0; = 0; có nghĩa; vô nghĩa.
tìm x
a,(9x-21):3=2
b,(x-1).(x-3)=0
a)(9x-21):3=2
9x-21=6
9x=27
x=3
b)(x-1)(x-3)=0
=>x-1=0 hoặc x-3=0
x=1 hoặc x=3
a, (9x - 21) : 3 = 2
=> 9x - 21 = 2 x 3
=> 9x - 21 = 6
=> 9x = 6 + 21
=> 9x = 27
=> x = 27 : 9 = 3
b, (x - 1).(x - 3) = 0
=> x - 1 = 0 và x - 3 = 0
x - 1 = 0 => x = 0 + 1 = 1
x - 3 = 0 => x = 0 + 3 = 3
Bài 2: Tìm x
a) (x-2)2-(2x+3)2=0
b) 9.(2x+1)2-4.(x+1)2=0
c) x3-6x2+9x=0
d) x2.(x+1)-x.(x+1)+x.(x-1)=0
a)\(\left(x-2\right)^2-\left(2x+3\right)^2=0\Rightarrow\left(x-2+2x+3\right)\left(x-2-2x-3\right)=0\)
\(\Rightarrow\left(3x+1\right)\left(-x-5\right)=0\Rightarrow\left[{}\begin{matrix}3x+1=0\\-x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=-5\end{matrix}\right.\)
b)\(9\left(2x+1\right)^2-4\left(x+1\right)^2=0\Rightarrow\left[3\left(2x+1\right)+2\left(x+1\right)\right]\left[3\left(2x+1\right)-2\left(x+1\right)\right]=0\)
\(\Rightarrow\left[8x+5\right]\left[4x+1\right]=0\Rightarrow\left[{}\begin{matrix}8x+5=0\\4x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{5}{8}\\x=\dfrac{1}{4}\end{matrix}\right.\)
c)\(x^3-6x^2+9x=0\Rightarrow x\left(x^2-6x+9\right)=0\Rightarrow x\left(x-3\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
d) \(x^2\left(x+1\right)-x\left(x+1\right)+x\left(x-1\right)=0\)
\(\Rightarrow x\left(x+1\right)\left(x^2-1\right)+x\left(x-1\right)=0\)
\(\Rightarrow x\left(x+1\right)\left(x-1\right)\left(x+1\right)+x\left(x-1\right)=0\)
\(\Rightarrow x\left(x-1\right)\left[\left(x+1\right)\left(x+1\right)+1\right]=0\)
\(\Rightarrow x\left(x-1\right)\left[\left(x+1\right)^2+1\right]=0\)
Do \(\left(x+1\right)^2+1>0\)
\(\Rightarrow x\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
b2 tìm x
a)x^2-4x-5=0
b)5x^2-9x-2=0
c)(x^2+1)-5(x^2+1)+6=0
d)(x^2+6x)-2(x+3)^2-17=0
Lời giải:
a. $x^2-4x-5=0$
$\Leftrightarrow (x+1)(x-5)=0$
$\Leftrightarrow x+1=0$ hoặc $x-5=0$
$\Leftrightarrow x=-1$ hoặc $x=5$
b.
$5x^2-9x-2=0$
$\Leftrightarrow (x-2)(5x+1)=0$
$\Leftrightarrow x-2=0$ hoặc $5x+1=0$
$\Leftrightarrow x=2$ hoặc $x=\frac{-1}{5}$
c.
$(x^2+1)-5(x^2+1)+6=0$
$\Leftrightarrow a^2-5a+6=0$ (đặt $x^2+1=a$)
$\Leftrightarrow (a-2)(a-3)=0$
$\Leftrightarrow a-2=0$ hoặc $a-3=0$
$\Leftrightarrow x^2-1=0$ hoặc $x^2-2=0$
$\Leftrightarrow (x-1)(x+1)=0$ hoặc $(x-\sqrt{2})(x+\sqrt{2})=0$
$\Leftrightarrow x\in\left\{\pm 1; \pm \sqrt{2}\right\}$
d.
$(x^2+6x)-2(x+3)^2-17=0$
$\Leftrightarrow (x^2+6x+9)-2(x+3)^2-26=0$
$\Leftrightarrow (x+3)^2-2(x+3)^2-26=0$
$\Leftrightarrow -(x+3)^2-26=0$
$\Leftrightarrow (x+3)^2=-26<0$ (vô lý)
Do đó không tồn tại $x$ thỏa mãn.