rút gọn D = \(\sqrt{x+\sqrt{2x-1}}\)-\(\sqrt{x-\sqrt{2x-1}}\)
Rút gọn : A=\(\dfrac{\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}}{\sqrt{x+\sqrt{2x-1}+\sqrt{x-\sqrt{2x-1}}}}.\left(\sqrt{2x-1}\right)\)
Rút gọn biểu thức \(P=\left(\frac{\sqrt{x}+1}{\sqrt{2x}+1}+\frac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}-1\right):\left(1+\frac{\sqrt{x}+1}{\sqrt{2x}+1}-\frac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\right)\)
bài 1 rút gọn biểu thức A= \(\sqrt{x+\sqrt{2x-1}}\) - \(\sqrt{x-\sqrt{2x-1}}\)
A= x-2 2+ sqrt x (x>=0); ==( 8x sqrt x -1 2x- sqrt x - 8x sqrt x +1 2x+ sqrt x )= 2x+1 2x-1 vdi x>0,x ne 1 2 ;x ne- 1 2 MS05. Cho A =- a. Rút gọn B. b. Tim x d hat e A B =1
1.P= \(\left(\dfrac{\sqrt{x}+1}{\sqrt{2x}-1}+\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}-1\right)\):\(\left(1+\dfrac{\sqrt{x}+1}{\sqrt{2x}+1}\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\right)\)
a) Rút gọn P
b) Tính giá trị của P khi x=\(\dfrac{1}{2}\)\(\left(3+2\sqrt{2}\right)\)
a) Ta có: \(P=\left(\dfrac{\sqrt{x}+1}{\sqrt{2x}-1}+\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}+1}-1\right):\left(1+\dfrac{\sqrt{x}+1}{\sqrt{2x}+1}-\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\right)\)
\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{2x}+1\right)+\left(\sqrt{2x}+\sqrt{x}\right)\left(\sqrt{2x}-1\right)-2x+1}{\left(\sqrt{2x}-1\right)\left(\sqrt{2x}+1\right)}:\left(\dfrac{2x-1+\left(\sqrt{x}+1\right)\left(\sqrt{2x}-1\right)-\left(\sqrt{2x}+\sqrt{x}\right)\left(\sqrt{2x}+1\right)}{\left(\sqrt{2x}-1\right)\left(\sqrt{2x}+1\right)}\right)\)
\(=\dfrac{x\sqrt{2}+\sqrt{x}+\sqrt{2x}+1+2x-\sqrt{2x}+x\sqrt{2}+\sqrt{x}-2x+1}{2x-1}:\dfrac{2x-1+x\sqrt{2}-\sqrt{x}+\sqrt{2x}-1-\left(2x+\sqrt{2x}+x\sqrt{2}+\sqrt{x}\right)}{2x-1}\)
\(=\dfrac{2x\sqrt{2}+2\sqrt{x}+2}{-2-2\sqrt{x}}\)
Rút gọn biểu thức:
\(A=\frac{\sqrt{x+2\sqrt{x-1}+\sqrt{x-2\sqrt{x-1}}}}{\sqrt{x+\sqrt{2x-1}+\sqrt{x-\sqrt{2x-1}}}}.\sqrt{2x-1}\)
cho M= \(\left(\dfrac{\sqrt{x}+1}{\sqrt{2x}+1}+\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}-1\right)\div\left(1+\dfrac{\sqrt{x}}{\sqrt{2x}+1}-\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\right)\)
a) rút gọn M
b) tính giá trị của M khi \(x=\dfrac{1}{3}\left(3+2\sqrt{2}\right)\)
c) tìm tất cả các giá trị của x sao cho B=x-4
d) tìm khoảng giá trị của x sao cho B <\(-\dfrac{2}{3}\)
Lm nhanh giúp mk nhé mk đang cần gấp
a) Ta có: \(M=\left(\dfrac{\sqrt{x}+1}{\sqrt{2x}+1}+\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}-1\right):\left(1+\dfrac{\sqrt{x}}{\sqrt{2x}+1}-\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\right)\)
\(=\left(\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{2x}-1\right)+\sqrt{x}\left(\sqrt{2x}+1\right)^2-2x+1}{\left(\sqrt{2x}+1\right)\left(\sqrt{2x}-1\right)}\right):\left(\dfrac{2x-1+\sqrt{x}\left(\sqrt{2x}-1\right)-\sqrt{x}\left(\sqrt{2x}+1\right)^2}{\left(\sqrt{2x}+1\right)\left(\sqrt{2x}-1\right)}\right)\)
\(=\dfrac{x\sqrt{2}-\sqrt{x}+\sqrt{2x}-1+\sqrt{x}\left(2x+2\sqrt{2x}+1\right)-2x+1}{2x-1+x\sqrt{2}-\sqrt{x}-\sqrt{x}\left(2x+2\sqrt{2x}+1\right)}\)
\(=\dfrac{x\sqrt{2}-\sqrt{x}+\sqrt{2x}-2x+2x\sqrt{x}+2\sqrt{2x}+\sqrt{x}}{2x-1+x\sqrt{2}-\sqrt{x}-2x\sqrt{x}-2\sqrt{2x}-\sqrt{x}}\)
\(=\dfrac{x\sqrt{2}+3\sqrt{2x}-2x+2x\sqrt{x}}{x\sqrt{2}-2\sqrt{2x}+2x-2\sqrt{x}-2x\sqrt{x}}\)
Rút gọn:
\(\left(\dfrac{1}{1-\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right)\left(\dfrac{2x+\sqrt{x}-1}{1-x}+\dfrac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right)\)
\(\frac{\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}}{\sqrt{x+\sqrt{2x-1}}-\sqrt{x-\sqrt{2x-1}}}\)
rút gọn biểu thức
\(\frac{A}{\sqrt{2}}\)=\(\frac{\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}}{\sqrt{2x-1+2\sqrt{2x-1}+1}-\sqrt{2x-1-2\sqrt{2x-1}+1}}\) (DK \(x\ge1\)
\(=\frac{\sqrt{x-1}+1+\left|\sqrt{x-1}-1\right|}{\sqrt{2x-1}+1-\left|\sqrt{2x-1}-1\right|}\)
vs \(x\ge2\) \(\frac{\sqrt{x-1}+1+\sqrt{x-1}-1}{\sqrt{2x-1}+1-\sqrt{2x-1}+1}=\frac{2\sqrt{x-1}}{2}=\sqrt{x-1}\) \(\Rightarrow A=\sqrt{2x-2}\)
vs \(1\le x< 2\) \(\frac{\sqrt{x-1}+1+1-\sqrt{x-1}}{\sqrt{2x-1}+1-1+\sqrt{2x-1}}=\frac{1}{\sqrt{2x-1}}\) \(\Rightarrow A=\frac{\sqrt{2}}{\sqrt{2x-1}}\)
\(\sqrt{2X-1}\ge1\Leftrightarrow X\ge1\)NEN SUY RA THEO CACH LAM CUA TO
THOI U AM BUSY SEE YOU AGAIN
làm zì mà dài vậy \(\sqrt{x+2\sqrt{x-1}}=\sqrt{x-1+2\sqrt{x-1}+1}=\sqrt{\left(\sqrt{x-1}-1\right)^2}\)
Rút gọn: \(1-\left(\dfrac{2x-1+\sqrt{x}}{1-x}+\dfrac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{ }}x\right)\dfrac{\left(x-\sqrt{x}\right)\left(1-\sqrt{x}\right)}{2\sqrt{x}-1}\)