Rút gọn: \(1-\left(\dfrac{2x-1+\sqrt{x}}{1-x}+\dfrac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{ }}x\right)\dfrac{\left(x-\sqrt{x}\right)\left(1-\sqrt{x}\right)}{2\sqrt{x}-1}\)
Rút gọn:
1) \(P=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)
2)\(A=\left(\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right):\left(1-\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\)
3) \(A=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
4) \(A=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{x\sqrt{x}-\sqrt{x}+x-1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2}{x-1}\right)\)
Mng giúp e vs ạ, cần gấp :<
\(\left(\dfrac{2x}{\sqrt{x^3}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\dfrac{1+\sqrt{x^3}}{1+\sqrt{x}}-\sqrt{x}\right)\)
rút gọn biểu thức trên
\(C=\left(\dfrac{2x+1}{\sqrt{x^3}}-\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\right)\left(\dfrac{1-\sqrt{x^3}}{1+\sqrt{x^3}}-\sqrt{x}\right)\)
a, Rút gọn C
RÚT GỌN P:
P=\(\left(2+\dfrac{\sqrt{X}-1}{2\sqrt{X}-3}\right):\left(\dfrac{6\sqrt{X}+1}{2X-\sqrt{X}-3}+\dfrac{\sqrt{X}}{\sqrt{X}+1}\right)\)
rút gọn P
P=\(\left(2-\dfrac{\sqrt{X}-1}{2\sqrt{X}-3}\right):\left(\dfrac{6\sqrt{X}+1}{2X-\sqrt{X}-3}+\dfrac{\sqrt{X}}{\sqrt{X}+1}\right)\)
Rút gọn biểu thức:
1, \(B=\left(\dfrac{x.\sqrt{x}+x+\sqrt{x}}{x.\sqrt{x}-1}-\dfrac{\sqrt{x}+3}{1-\sqrt{x}}\right).\dfrac{x-1}{2x+\sqrt{x}-1}\)với x>-0, x khác 1, x khác \(\dfrac{1}{4}\)
2, \(A=\dfrac{\left(\sqrt{x}-1\right)^2.\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{3\sqrt{x}+1}{x-1}\) với x\(\ge\)0:x\(\ne\)0
Rút gọn:
A=\(\left(\dfrac{1}{1-\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right)\left(\dfrac{2x+\sqrt{x}-1}{1-x}+\dfrac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right)\)
Rút gọn A
\(A=\left(\dfrac{2x-1}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right):\left(1-\dfrac{x-2}{x+\sqrt{x}+1}\right)\)