Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Girl Little
Xem chi tiết
Vĩnh Thụy
Xem chi tiết
pham trung thanh
29 tháng 9 2017 lúc 16:08

Ta có\(a>b-c\)

Mà a;b;c là độ dài 3 cạnh của 1 tam giác nên a;b;c>0

\(\Rightarrow a^2>\left(b-c\right)^2\)

\(\Leftrightarrow a^2>b^2-2bc+c^2\)

\(\Leftrightarrow a^2-b^2-c^2+2bc>0\)

Vậy \(a^2-b^2-c^2+2bc>0\)

Kim Lê Khánh Vy
Xem chi tiết
Pham Van Hung
19 tháng 7 2018 lúc 19:38

a^2 -b^2 -c^2 +2bc = a^2 -(b^2 +c^2 -2bc)

                            = a^2 -(b-c)^2

                            = (a-b+c)(a+b-c)

Theo bất đẳng thức tam giác, ta có: 

a+c>b và a+b>c

Suy ra: a-b+c >0 và a+b-c >0

Do đó: (a-b+c)(a+b-c) >0

Vậy a^2 - b^2 -c^2 + 2bc >0

Chúc bạn học tốt.

nguyễn thanh huyền
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 5 2021 lúc 21:58

Do a;b;c là 3 cạnh của 1 tam giác nên: \(\left\{{}\begin{matrix}a+b-c>0\\a+c-b>0\\b+c-a>0\end{matrix}\right.\)

BĐT đã cho tương đương:

\(\dfrac{a^2+2bc}{b^2+c^2}-1+\dfrac{b^2+2ac}{a^2+c^2}-1+\dfrac{c^2+2ab}{a^2+b^2}-1>0\)

\(\Leftrightarrow\dfrac{a^2-\left(b^2-2bc+c^2\right)}{b^2+c^2}+\dfrac{b^2-\left(a^2-2ac+c^2\right)}{a^2+c^2}+\dfrac{c^2-\left(a^2-2ab+b^2\right)}{a^2+b^2}>0\)

\(\Leftrightarrow\dfrac{a^2-\left(b-c\right)^2}{b^2+c^2}+\dfrac{b^2-\left(a-c\right)^2}{a^2+c^2}+\dfrac{c^2-\left(a-b\right)^2}{a^2+b^2}>0\)

\(\Leftrightarrow\dfrac{\left(a+c-b\right)\left(a+b-c\right)}{b^2+c^2}+\dfrac{\left(a+b-c\right)\left(b+c-a\right)}{a^2+c^2}+\dfrac{\left(b+c-a\right)\left(a+c-b\right)}{a^2+b^2}>0\) (luôn đúng)

Vậy BĐT đã cho đúng

Nguyễn Ngọc Oanh
Xem chi tiết
sdsdfdfdf
22 tháng 10 2021 lúc 11:20

\(a^2-b^2-c^2+2bc\)

\(=a^2-\left(b-c\right)^2\)

\(=\left(a-b+c\right)\left(a+b-c\right)\)

Khách vãng lai đã xóa
quỳnh nguyễn
Xem chi tiết
Nguyễn Thị BÍch Hậu
29 tháng 6 2015 lúc 12:44

1) \(x^3-x^2+2x=x\left(x^2-x+2\right)\)bạn xem lại đề xem có sai không nha. chỗ này sau khi thu gọn và cho x ra ngoài thì phải có dạng: \(x\left(x^2-3x+2\right)=x\left(x^2-2x-x+2\right)=x\left(x-1\right)\left(x-2\right)\)hoặc \(x\left(x^2+3x+2\right)=x\left(x^2+2x+x+2\right)=x\left(x+1\right)\left(x+2\right)\)

nó là tích của 3 số tự nhiên liên tiếp => trong đó phỉa có 1 số chia hết cho 2, có một số chia hết cho 3. vì 3,2 ngtố cùng nhau =>tích của 3 số ltiếp sẽ chia hết cho 3.2=6 => chia hết cho 6 với mọi x

2) \(a^2-\left(b^2-2bc+c^2\right)=a^2-\left(b-c\right)^2=\left(a+b-c\right)\left(a-b+c\right)\)

mình làm đến đây thì k biết giải thích sao nữa :( thôi cứ tick đúng cho mình nha

Mr Lazy
29 tháng 6 2015 lúc 16:20

Câu 1 Sai đề. Chỉ cần thay x = 1,2,3 ta thấy ngay sai 

Câu 2 sai đề. chứng minh như sau;

Thay a,b,c là số dài 3 cạnh của 1 tam giác đều có cạnh 0,5 (nhỏ hơn 1 là đủ)

\(a^2-\left(b^2-2bc+c^2\right)>c\)\(\Leftrightarrow a^2-\left(b-c\right)^2>c\) 

Với a = b = c = 0,5 thì điều trên tương đương \(0,5^2-\left(0,5-0,5\right)^2>0,5\)

\(\Leftrightarrow0,25>0,5\) => vô lí

Như Trần
Xem chi tiết
Nguyễn Khánh Huyền
9 tháng 8 2018 lúc 20:26

Bài toán này chỉ chứng minh được với điều kiện đó là tam giác vuông với 2 cạnh của góc vuông là a & b. 
Lúc đó ta sẽ có: 
a^2 + b^2 = c^2 
Suy ra: 
a^2 + b^2 - c^2 = 0 (1) 
Đề bài là: 
M = 4a^2b^2 – ( a^2+ b^2 – c^2) 
Thay (1) vào: 
M = 4a^2b^2 - 0 
M = 4a^2b^2 
M > 0 (hay M luôn dương). 

Kaori Miyazono
9 tháng 8 2018 lúc 20:29

Ta có \(a^2-b^2-c^2-2bc\)

\(=a^2-\left(b^2+2bc+c^2\right)\)

\(=a^2-\left(b+c\right)^2\)

Ta có \(a^2\ge0;\left(b+c\right)^2\ge0\)nên \(a^2-\left(b+c\right)^2\ge0\)

Khi đó hiệu trên luôn dương 

Vậy....

Bùi Đức Anh
9 tháng 8 2018 lúc 20:51

Ta có a − b − c − 2bc = a − b + 2bc + c = a − b + c

Ta có a ≥ 0; b + c ≥ 0

nên a − b + c ≥ 0

Khi đó hiệu trên luôn dương 

Đăng Hải
Xem chi tiết
Lê Vương Kim Anh
Xem chi tiết
Đinh Đức Hùng
27 tháng 9 2017 lúc 19:24

 a; b; c là độ dài 3 cạnh một tam giác nên \(a>b-c\) (bđt tam giác)

\(\Leftrightarrow a^2>\left(b-c\right)^2\)

\(\Leftrightarrow a^2-\left(b-c\right)^2>0\)

\(\Leftrightarrow a^2-\left(b^2-2bc+c^2\right)>0\)

\(\Leftrightarrow a^2-b^2-c^2+2bc>0\)(đpcm)

Phan Nghĩa
27 tháng 9 2017 lúc 19:30

Tui đang lười

Làm theo cái này

Câu hỏi của Đoàn Thanh Kim Kim - Toán lớp 7 - Học toán với OnlineMath

Vào câu hỏi tương tự cũng được. Ohe?

Nguyễn Ngọc Oanh
Xem chi tiết
sdsdfdfdf
23 tháng 10 2021 lúc 13:04

\(a^2-b^2-c^2+2bc\)

\(=a^2-\left(b-c\right)^2\)

\(=\left(a-b+c\right)\left(a+b-c\right)\)

Khách vãng lai đã xóa
Nguyễn Ngọc Oanh
23 tháng 10 2021 lúc 13:05

r sao nữa hả bạn

Khách vãng lai đã xóa
sdsdfdfdf
23 tháng 10 2021 lúc 13:08

Vì a,b,c là ba cạnh của tam giác nên a-b +c >0 và a+b-c >0

Suy ra đpcm

Khách vãng lai đã xóa