Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cíuuuuuuuuuu
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 8 2021 lúc 20:36

a: \(\dfrac{3\left(x-y\right)^4+2\left(x-y\right)^3-5\left(x-y\right)^2}{\left(y-x\right)^2}\)

\(=\dfrac{3\left(x-y\right)^4+2\left(x-y\right)^3-5\left(x-y\right)^2}{\left(x-y\right)^2}\)

\(=3\left(x-y\right)^2+2\left(x-y\right)-5\)

b: \(\dfrac{\left(x-2y\right)^3}{x^2-4xy+4y^2}\)

\(=\dfrac{\left(x-2y\right)^3}{\left(x-2y\right)^2}\)

=x-2y

c: \(\dfrac{x^3+y^3}{x+y}\)

\(=\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)}{x+y}\)

\(=x^2-xy+y^2\)

Nguyễn Hữu Quang
Xem chi tiết

Bài 3:

a, (\(x\)+y+z)2

=((\(x\)+y) +z)2

= (\(x\) + y)2 + 2(\(x\) + y)z + z2

\(x^2\) + 2\(xy\) + y2 + 2\(xz\) + 2yz + z2

=\(x^2\) + y2 + z2 + 2\(xy\) + 2\(xz\) + 2yz

 

b, (\(x-y\))(\(x^2\) + y2 + z2 - \(xy\) - yz - \(xz\))

\(x^3\) + \(xy^2\) + \(xz^2\) - \(x^2\)y - \(xyz\) - \(x^2\)z - y3 

Đến dây ta thấy xuất hiện \(x^3\) - y3 khác với đề bài, em xem lại đề bài nhé

c,

(\(x\) + y + z)3 

=(\(x\) + y)3 + 3(\(x\) + y)2z + 3(\(x\)+y)z2 + z3

\(x^3\) + 3\(x^2\)y + 3\(xy^{2^{ }}\) + y3 +  3(\(x\)+y)z(\(x\) + y + z) + z3

\(x^3\) + y3 + z3 + 3\(xy\)(\(x\) + y) + 3(\(x+y\))z(\(x+y+z\))

\(x^3\) + y3 + z+ 3(\(x\) + y)( \(xy\) + z\(x\) + yz + z2)

\(x^3\) + y3 + z3 + 3(\(x\) + y){(\(xy+xz\)) + (yz + z2)}

\(x^3\) + y3 + z3 + 3(\(x\) + y){ \(x\)( y +z) + z(y+z)}

\(x^3\) + y3 + z3 + 3(\(x\) + y)(y+z)(\(x+z\)) (đpcm)

 

 

phạm văn trường
Xem chi tiết
NT Quỳnh Anh
Xem chi tiết
-_Munn_-
Xem chi tiết
Yeutoanhoc
5 tháng 6 2021 lúc 21:57

`a)(x-1)(x^2+x+1)`

`=x^3+x^2+x-x^2-x-1`

`=x^3-1`

`b)(x^3+x^2y+xy^2+y^3)(x-y)`

`=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4`

`=x^4-y^4`

Trần Ái Linh
5 tháng 6 2021 lúc 21:58

a) VT`=(x-1)(x^2+x+1)`

`=x^3 +x^2 +x -x^2-x-1 `

`=x^3-1=` VP.

b) VT `=(x^3+x^2y+xy^2+y^3)(x-y)`

`=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4`

`=x^4-y^4=` VP.

HanSoo  >>>^^^.^^^<<<
Xem chi tiết
Phạm Nhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 6 2022 lúc 19:53

a: \(A=3\cdot\dfrac{1}{8}\cdot\dfrac{-1}{3}+6\cdot\dfrac{1}{8}\cdot\dfrac{1}{9}+3\cdot\dfrac{1}{2}\cdot\dfrac{-1}{27}\)

\(=-\dfrac{1}{8}+\dfrac{1}{12}-\dfrac{1}{18}\)

\(=-\dfrac{7}{72}\)

b: \(B=\left(-1\cdot3\right)^2+\left(-1\right)\cdot3+\left(-1\right)^3+3^3\)

\(=9-3-1+27=36-4=32\)

c: \(C=-\dfrac{3}{4}xy^2-2x^2y-\dfrac{9}{2}xy\)

\(=\dfrac{-3}{4}\cdot\dfrac{1}{2}\cdot\left(-1\right)^2-2\cdot\dfrac{1}{4}\cdot\left(-1\right)-\dfrac{9}{2}\cdot\dfrac{1}{2}\cdot\left(-1\right)\)

\(=\dfrac{-3}{8}+\dfrac{1}{2}+\dfrac{9}{4}=\dfrac{19}{8}\)

Hoang Yen Pham
Xem chi tiết
Phùng Đức Tài
Xem chi tiết
Nguyễn Đức Trí
27 tháng 8 2023 lúc 21:37

a) \(\left(x+2y\right)^2-\left(x-y\right)^2=\left(x+2y+x-y\right)\left(x+2y-x+y\right)\)

\(=\left(2x+y\right).3y\)

b) \(\left(x+1\right)^3+\left(x-1\right)^3\)

\(=\left(x+1+x-1\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(x-1\right)+\left(x-1\right)^2\right]\)

\(=2x\left[\left(x+1\right)^2-\left(x^2-1\right)+\left(x-1\right)^2\right]\)

c) \(9x^2-3x+2y-4y^2\)

\(=9x^2-4y^2-3x+2y\)

\(=\left(3x-2y\right)\left(3x+2y\right)-\left(3x-2y\right)\)

\(=\left(3x-2y\right)\left[3x+2y-1\right]\)

d) \(4x^2-4xy+2x-y+y^2\)

\(=4x^2-4xy+y^2+2x-y\)

\(=\left(2x-y\right)^2+2x-y\)

\(=\left(2x-y\right)\left(2x-y+1\right)\)

e) \(x^3+3x^2+3x+1-y^3\)

\(=\left(x+1\right)^3-y^3\)

\(=\left(x+1-y\right)\left[\left(x+1\right)^2+y\left(x+1\right)+y^2\right]\)

g) \(x^3-2x^2y+xy^2-4x\)

\(=x\left(x^2-2xy+y^2\right)-4x\)

\(=x\left(x-y\right)^2-4x\)

\(=x\left[\left(x-y\right)^2-4\right]\)

\(=x\left(x-y+2\right)\left(x-y-2\right)\)

Kiều Vũ Linh
27 tháng 8 2023 lúc 21:55

a) (x + 2y)² - (x - y)²

= (x + 2y - x + y)(x + 2y + x - y)

= 3y(2x + y)

b) (x + 1)³ + (x - 1)³

= (x + 1 + x - 1)[(x + 1)² - (x + 1)(x - 1) + (x - 1)²]

= 2x(x² + 2x + 1 - x² + 1 + x² - 2x + 1)

= 2x(x² + 3)

c) 9x² - 3x + 2y - 4y²

= (9x² - 4y²) - (3x - 2y)

= (3x - 2y)(3x + 2y) - (3x - 2y)

= (3x - 2y)(3x + 2y - 1)

d) 4x² - 4xy + 2x - y + y²

= (4x² - 4xy + y²) + (2x - y)

= (2x - y)² + (2x - y)

= (2x - y)(2x - y + 1)

e) x³ + 3x² + 3x + 1 - y³

= (x³ + 3x² + 3x + 1) - y³

= (x + 1)³ - y³

= (x + 1 - y)[(x + 1)² + (x + 1)y + y²]

= (x - y + 1)(x² + 2x + 1 + xy + y + y²)

g) x³ - 2x²y + xy² - 4x

= x(x² - 2xy + y² - 4)

= x[(x² - 2xy + y²) - 4]

= x[(x - y)² - 2²]

= x(x - y - 2)(x - y + 2)