CMR: \(1^k+2^k+...+n^k⋮\dfrac{n\left(n+2\right)}{2}\)(\(n,k\in N\)*, k lẻ)
CMR:
\(1^k+2^k+...+n^k=\dfrac{n\left(n+1\right)}{2}\)
Đẳng thức này chỉ đúng khi $k=1$ thôi em.
Cho \(\hept{\begin{cases}a_1>a_2>...>a_n>0\\1\le k\in Z\end{cases}}\)
CMR : \(a_1+\frac{1}{a_n\left(a_1-a_2\right)^k\left(a_2-a_3\right)^k...\left(a_{n-1}-a_n\right)^k}\ge\frac{\left(n-1\right)k+2}{\sqrt[\left(n-1\right)k+2]{k^{\left(n-1\right)k}}}\)
Tính tổng: \(B=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{n\left(n+1\right)\left(n+2\right)}\)
Làm theo hướng dẫn: \(\dfrac{1}{k\left(k+1\right)\left(k+2\right)}=\dfrac{1}{2}\left(\dfrac{1}{k}+\dfrac{1}{k+2}\right)-\dfrac{1}{k+1}\)
Lời giải:
Ta có: \(\frac{1}{k(k+1)(k+2)}=\frac{1}{2}.\frac{2}{k(k+1)(k+2)}=\frac{1}{2}.\frac{(k+2)-k}{k(k+1)(k+2)}\)
\(=\frac{1}{2}\left(\frac{k+2}{k(k+1)(k+2)}-\frac{k}{k(k+1)(k+2)}\right)=\frac{1}{2}\left(\frac{1}{k(k+1)}-\frac{1}{(k+1)(k+2)}\right)\)
Áp dụng vào bài toán:
\(\frac{1}{1.2.3}=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}\right)\)
\(\frac{1}{2.3.4}=\frac{1}{2}\left(\frac{1}{2.3}-\frac{1}{3.4}\right)\)
\(\frac{1}{3.4.5}=\frac{1}{2}\left(\frac{1}{3.4}-\frac{1}{4.5}\right)\)
.......
\(\frac{1}{n(n+1)(n+2)}=\frac{1}{2}\left(\frac{1}{n(n+1)}-\frac{1}{(n+1)(n+2)}\right)\)
\(\Rightarrow B=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{n(n+1)}-\frac{1}{(n+1)(n+2)}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{(n+1)(n+2)}\right)=\frac{1}{4}-\frac{1}{2(n+1)(n+2)}\)
Tính tổng:
\(B=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{n\left(n+1\right)\left(n+2\right)}\)
Làm theo hướng dẫn: \(\dfrac{1}{k\left(k+1\right)\left(k+2\right)}=\dfrac{1}{2}\left(\dfrac{1}{k}+\dfrac{1}{k+2}\right)-\dfrac{1}{k+1}\)
\(B=\dfrac{1}{2}\left(\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+...+\dfrac{2}{n\left(n+1\right)\left(n+2\right)}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+...+\dfrac{1}{n\cdot\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{n^2+3n+2-2}{2\left(n+1\right)\left(n+2\right)}=\dfrac{n\left(n+3\right)}{4\left(n+1\right)\left(n+2\right)}\)
chứng minh các công th
1,\(k\left(k-1\right).C^k_n=n\left(n-1\right).C_{n-2}^{k-2}\)
2,\(\dfrac{1}{A^2_2}+\dfrac{1}{A^2_3}+...........+\dfrac{1}{A^2_n}=1-\dfrac{1}{n}\)
Gửi : Nguyễn Huy Thắng ( Quy nạp )
CMR : 1.2+2.3+3.4+...+n.(n+1)=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
Giải :
Đặt biểu thức trên là (*)
Với n = 1 Thì (*) \(\Leftrightarrow1.2=\frac{1.2.3}{3}\) ( Đúng )
Giả sử với (*) đúng với n=K
=> (*) <=> 1.2+2.3+...+k.(k+1)=\(.\frac{k.\left(k+1\right)\left(k+2\right)}{3}\)
Ta phải chứng minh (*) cùng đúng với 2=k+1
thật vậy với n=k+1
=>(*) <=> 1.2+2.3+...+k.(k+1)+(k+1).(k+2)=\(\frac{\left(k+1\right)\left(k+2\right)\left(k+3\right)}{3}\)
=> \(\frac{k.\left(k+1\right)\left(k+2\right)}{3}+\left(k+1\right).\left(k+2\right)=\frac{\left(k+1\right).\left(k+2\right)\left(k+3\right)}{3}\)
=> \(\frac{k}{3}+1=\frac{k+3}{3}\Leftrightarrow\frac{k}{3}+1=\frac{k}{3}+1\)( Đúng )
=> (*) đúng với n = k+1
Vậy (*) đúng với mọi n thuộc N*
Sai hay đúng vậy :)
1) Tìm x để phân thức sau bằng không:
\(\dfrac{x^3+x^2-x-1}{x^3+2x-3}\)
2) Tính tổng:
\(B=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{n\left(n+1\right)\left(n+2\right)}\)
Làm theo hướng dẫn: \(\dfrac{1}{k\left(k+1\right)\left(k+2\right)}=\dfrac{1}{2}\left(\dfrac{1}{k}+\dfrac{1}{k+2}\right)-\dfrac{1}{k+1}\)
Bài 1 :
Để \(\dfrac{x^3+x^2-x-1}{x^3+2x-3}=0\) thì \(x^3+x^2-x-1=0\)
\(\Leftrightarrow x^2\left(x+1\right)-\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)
Vậy,.........
Chứng minh rằng
\(\dfrac{k}{n.\left(n+k\right)}=\dfrac{1}{n}-\dfrac{1}{n+k}\left(n;kEN^{\cdot}\right)\)
\(\dfrac{1}{n}-\dfrac{1}{n+k}=\dfrac{n+k}{n\left(n+k\right)}-\dfrac{n}{n\left(n+k\right)}=\dfrac{n+k-n}{n\left(n+k\right)}=\dfrac{k}{n\left(n+k\right)}\)
\(\dfrac{k}{n\cdot\left(n+k\right)}=\dfrac{n+k-n}{n\left(n+k\right)}=\dfrac{1}{n}-\dfrac{1}{n+k}\)(đpcm)
Cho dãy \(\left(x_k\right)\) được xác định như sau: \(x_k=\dfrac{1}{2!}+\dfrac{2}{3!}+...+\dfrac{k}{\left(k+1\right)!}\)
Tìm \(limu_n\) với \(u_n=\sqrt[n]{x_1^n+x_2^n+...+x_{2011}^n}\).
Ủa đề bài như này là sao bạn? Cho dãy x(k), nhưng lại đi tìm u(n)?
Ok start
\(\dfrac{1}{2!}=\dfrac{2!-1}{2!}=1-\dfrac{1}{2!};\dfrac{2}{3!}=\dfrac{1}{3}=\dfrac{3!-2!}{3!.2!}=\dfrac{1}{2!}-\dfrac{1}{3!}\)
\(\Rightarrow\dfrac{k}{\left(k+1\right)!}=\dfrac{1}{k!}-\dfrac{1}{\left(k+1\right)!}\)
Explain: \(\dfrac{1}{k!}-\dfrac{1}{\left(k+1\right)!}=\dfrac{\left(k+1\right)k!-k!}{k!\left(k+1\right)!}=\dfrac{k+1-1}{\left(k+1\right)!}=\dfrac{k}{\left(k+1\right)!}\)< Có nên xài quy nạp mạnh cho chặt chẽ hơn ko nhỉ?>
Nhớ lại 1 bài toán lớp 6 cũng có dạng như này
\(\Rightarrow x_k=1-\dfrac{1}{\left(k+1\right)!}\)
Xet \(x_{k+1}-x_k=1-\dfrac{1}{\left(k+2\right)!}-1+\dfrac{1}{\left(k+1\right)!}=\dfrac{1}{\left(k+1\right)!}-\dfrac{1}{\left(k+2\right)!}>0\Rightarrow x_{k+1}>x_k\)
\(\Rightarrow x_1< x_2< ...< x_{2011}\Rightarrow x_1^n< x_2^n< ...< x_{2011}^n\)
\(\Rightarrow\sqrt[n]{x_1^n+x_2^n+...+x_{2011}^n}< \sqrt[n]{x_{2011}^n+x^n_{2011}+...+x^n_{2011}}=\sqrt[n]{2011.x^n_{2011}}=x_{2011}.\sqrt[n]{2011}\)
Mat khac: \(x_{2011}=\sqrt[n]{x^n_{2011}}< \sqrt[n]{x_1^n+x_2^n+...+x_{2011}^n}\)
\(\Rightarrow x_{2011}< \sqrt[n]{x^n_1+x_2^n+...+x_{2011}^n}< \sqrt[n]{2011}x_{2011}\)
\(\lim\limits x_{2011}=1-\dfrac{1}{2012!}\)
\(\lim\limits\sqrt[n]{2011}x_{2011}=\lim\limits2011^0.x_{2011}=1-\dfrac{1}{2012!}\)
\(\Rightarrow\lim\limits\left(u_n\right)=1-\dfrac{1}{2012!}\)
Xin dung cuoc choi tai day, ban check lai xem dung ko, tinh tui hay au co khi sai :v