\(B=\left(4+\sqrt{ }15\right).\left(\sqrt{ }10-\sqrt{ }6\right).\left(\sqrt{4-\sqrt{ }}15\right)\)
Tính:
a) \(A=\left(\sqrt{6}+\sqrt{10}\right)-\sqrt{4-\sqrt{15}}\)
b) \(B=\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right).\sqrt{3-\sqrt{15}}\)
c) \(C=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right).\sqrt{4-\sqrt{15}}\)
Tính
a) Ta có: \(A=\left(\sqrt{6}+\sqrt{10}\right)-\sqrt{4-\sqrt{15}}\)
\(=\sqrt{2}\left(\sqrt{3}+\sqrt{5}\right)-\sqrt{4-\sqrt{15}}\)
\(=\sqrt{3}+\sqrt{5}-\sqrt{8-2\sqrt{15}}\)
\(=\sqrt{3}+\sqrt{5}-\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{3}+3}\)
\(=\sqrt{3}+\sqrt{5}-\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
\(=\sqrt{3}+\sqrt{5}-\left|\sqrt{5}-\sqrt{3}\right|\)
\(=\sqrt{3}+\sqrt{5}-\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\sqrt{3}+\sqrt{5}-\sqrt{5}+\sqrt{3}\)
\(=2\sqrt{3}\)
c) Ta có: \(C=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{2}\cdot\sqrt{4-\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{3}+3}\)
\(=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
\(=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\left|\sqrt{5}-\sqrt{3}\right|\)
\(=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)^2\)
\(=\left(4+\sqrt{15}\right)\cdot\left(8-2\sqrt{15}\right)\)
\(=2\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)\)
\(=2\left[4^2-\left(\sqrt{15}\right)^2\right]\)
\(=2\cdot\left[16-15\right]=2\cdot1=2\)
\(\left(\sqrt{6}+\sqrt{10}\right).\sqrt{4-\sqrt{15}}\)
\(\left(3+\sqrt{15}\right).\left(\sqrt{10}-2\right).\sqrt{3-\sqrt{5}}\)
\(\left(4+\sqrt{15}\right).\left(\sqrt{10}-\sqrt{6}\right).\sqrt{4-\sqrt{15}}\)
Thực hiện phép tính ( rút gọn biểu thức )
a) \(\left(\sqrt{14}+\sqrt{6}\right)\sqrt{5-\sqrt{21}}\)
b) \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\)\(\sqrt{4-\sqrt{15}}\)
a) \(\left(\sqrt{14}+\sqrt{6}\right)\sqrt{5-\sqrt{21}}\)
\(=\sqrt{14}\cdot\sqrt{5-\sqrt{21}}+\sqrt{6}\cdot\sqrt{5-\sqrt{21}}\)
\(=\sqrt{14\cdot\left(5-\sqrt{21}\right)}+\sqrt{6\cdot\left(5-\sqrt{21}\right)}\)
\(=\sqrt{70-14\sqrt{21}}+\sqrt{30-6\sqrt{21}}\)
\(=\sqrt{7^2-2\cdot7\cdot\sqrt{21}+\left(\sqrt{21}\right)^2}+\sqrt{\left(\sqrt{21}\right)^2-2\cdot3\cdot\sqrt{21}+3^2}\)
\(=\sqrt{\left(7-\sqrt{21}\right)^2}+\sqrt{\left(\sqrt{21}-3\right)^2}\)
\(=\left|7-\sqrt{21}\right|+\left|\sqrt{21}-3\right|\)
\(=7-\sqrt{21}+\sqrt{21}-3\)
\(=4\)
b) \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
\(=\left[4\cdot\left(\sqrt{10}-\sqrt{6}\right)+\sqrt{15}\cdot\left(\sqrt{10}-\sqrt{6}\right)\right]\cdot\sqrt{4-\sqrt{15}}\)
\(=\left(4\sqrt{10}-4\sqrt{6}+\sqrt{150}-\sqrt{90}\right)\sqrt{4-\sqrt{15}}\)
\(=\left(4\sqrt{10}-4\sqrt{6}+5\sqrt{6}-3\sqrt{10}\right)\sqrt{4-\sqrt{15}}\)
\(=\left(\sqrt{10}+\sqrt{6}\right)\left(\sqrt{4-\sqrt{15}}\right)\)
\(=\sqrt{10\cdot\left(4-\sqrt{15}\right)}+\sqrt{6\cdot\left(4-\sqrt{15}\right)}\)
\(=\sqrt{40-10\sqrt{15}}+\sqrt{24-6\sqrt{15}}\)
\(=\sqrt{5^2-2\cdot5\cdot\sqrt{15}+\left(\sqrt{15}\right)^2}+\sqrt{\left(\sqrt{15}\right)^2-2\cdot3\cdot\sqrt{15}+3^2}\)
\(=\sqrt{\left(5-\sqrt{15}\right)^2}+\sqrt{\left(\sqrt{15}-3\right)^2}\)
\(=\left|5-\sqrt{15}\right|+\left|\sqrt{15}-3\right|\)
\(=5-\sqrt{15}+\sqrt{15}-3\)
\(=2\)
rút gọn
C=\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\left(\sqrt{4-\sqrt{15}}\right)\)
\(C=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)
`C=(4+\sqrt{15})(\sqrt{10}-\sqrt{6})\sqrt{4-\sqrt{15}}`
`C=(4\sqrt{10}-4\sqrt{6}+5\sqrt{6}-3\sqrt{10})\sqrt{4-\sqrt{15}}`
`C=(\sqrt{10}+\sqrt{6})\sqrt{4-\sqrt{15}}`
`C=\sqrt{(\sqrt{10}+\sqrt{6})^2 .(4-\sqrt{15})}`
`C=\sqrt{(10+6+2\sqrt{60})(4-\sqrt{15})}`
`C=\sqrt{(16+4\sqrt{15})(4-\sqrt{15})}`
`C=\sqrt{64-16\sqrt{15}+16\sqrt{15}-60}`
`C=\sqrt{4}=2`
Dạng 3.Chứng minh đẳng thức
Bài 1: CM
a)\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}=2\)
b)\(\left(5+\sqrt{21}\right)\left(\sqrt{14}-\sqrt{6}\right)\sqrt{5-\sqrt{21}}=8\)
Bài 2 :CM
\(\dfrac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{2}}=\sqrt{\sqrt{5}+1}\)
Bài 1
a) Đặt VT = A
<=> \(2\sqrt{2}A=\left(8+2\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{8-2\sqrt{15}}\)
<=> \(2\sqrt{2}A=\left(\sqrt{5}+\sqrt{3}\right)^2.\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right).\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
<=> \(2A=\left(\sqrt{5}+\sqrt{3}\right)^2.\left(\sqrt{5}-\sqrt{3}\right)^2\)
<=> 2A = \(\left(5-3\right)^2=4\)
<=> A = 2
b) Đặt VT = B
<=> \(2\sqrt{2}B=\left(10+2\sqrt{21}\right).\left(\sqrt{14}-\sqrt{6}\right)\sqrt{10-2\sqrt{21}}\)
<=> \(2\sqrt{2}B=\left(\sqrt{7}+\sqrt{3}\right)^2.\sqrt{2}\left(\sqrt{7}-\sqrt{3}\right).\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\)
<=> \(2B=\left(\sqrt{7}+\sqrt{3}\right)^2.\left(\sqrt{7}-\sqrt{3}\right)^2=\left(7-3\right)^2=16\)
<=> B = 8
Bài 2
Đặt VT = A
<=> A2 = \(\dfrac{\sqrt{5}+2+\sqrt{5}-2+2\sqrt{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}}{2}\)
<=> A2 = \(\dfrac{2\sqrt{5}+2\sqrt{5-4}}{2}=\dfrac{2\sqrt{5}+2}{2}=\sqrt{5}+1\)
<=> \(A=\sqrt{\sqrt{5}+1}\)
\(a.\left(3-\sqrt{5}\right)\left(\sqrt{10}-2\right).\sqrt{3+\sqrt{5}}\\ \)
\(b.\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right).\sqrt{4-\sqrt{15}}\\ \)
Tính: a. \(\left(3\sqrt{2}+\sqrt{6}\right)\cdot\left(6-3\sqrt{3}\right)\)
b. \(\left(4+\sqrt{15}\right)\cdot\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)
c. \(\left(3-\sqrt{5}\right)\cdot\left(10-\sqrt{2}\right)\cdot\sqrt{3+\sqrt{5}}\)
\(\left(3\sqrt{2}+\sqrt{6}\right)\left(6-3\sqrt{3}\right)\)
\(=\sqrt{6}\left(\sqrt{3}+1\right)\times3\left(2-\sqrt{3}\right)\)
\(=\dfrac{3\sqrt{6}}{2}\left(\sqrt{3}+1\right)\left(4-2\sqrt{3}\right)\)
\(=\dfrac{3\sqrt{6}}{2}\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)^2\)
\(=\dfrac{3\sqrt{6}}{2}\left(3-1\right)\left(\sqrt{3}-1\right)\)
\(=3\sqrt{6}\left(\sqrt{3}-1\right)\)
https://hoc24.vn/hoi-dap/question/405366.html
\(\sqrt{4-\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right)\left(4+\sqrt{15}\right)\)
\(=\sqrt{\left(4+\sqrt{15}\right)^2\left(4-\sqrt{15}\right)}\times\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\sqrt{\left(4+\sqrt{15}\right)\left(16-15\right)}\times\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\sqrt{8+2\sqrt{15}}\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\left(\sqrt{5}-\sqrt{3}\right)\)
= 5 - 3
= 2
Rút gọn:
a)\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
b)\(\sqrt{3-\sqrt{5}}\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)\)
ai nhanh nhat mk se k (neu dung). mk cần gấp
tích mình đi
ai tích mình
mình tích lại
thanks
Tính : \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
$(4+\sqrt{15})(\sqrt{10}-\sqrt6)\sqrt{4-\sqrt{15}}$
$=\sqrt{4+\sqrt{15}}.\sqrt{4+\sqrt{15}}.(\sqrt{10}-\sqrt6)\sqrt{4-\sqrt{15}}$
$=(\sqrt{10}-\sqrt6)\sqrt{4+\sqrt{15}}\sqrt{16-15}$
$=\sqrt2(\sqrt5-\sqrt3)\sqrt{4+\sqrt{15}}$
$=(\sqrt5-\sqrt3)\sqrt{8+2\sqrt{15}}$
$=(\sqrt5-\sqrt3)\sqrt{5+2\sqrt{5}.\sqrt3+3}$
$=(\sqrt5-\sqrt3)\sqrt{(\sqrt5+\sqrt3)^2}$
$=(\sqrt5-\sqrt3)(\sqrt5+\sqrt3)=5-3=2$