Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hannieboe
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 1 2022 lúc 17:49

a: BC=10cm

DE=5cm

b: Xét ΔABC có

D là trung điểm của AB

F là trung điểm của BC

Do đó: DF là đường trung bình của ΔABC

Suy ra: DF//AC và DF=AC/2

hay DF=CE và DF//CE

Xét tứ giác DFCE có 

DF//CE

DF=CE
Do đó: DFCE là hình bình hành

c: Xét tứ giác ADFE có 

FD//AE
FD=AE
Do đó: ADFE là hình bình hành

mà \(\widehat{EAD}=90^0\)

nên ADFE là hình chữ nhật

Suy ra: FA=DE

Thảo
Xem chi tiết
Đức Thuận Trần
2 tháng 1 2021 lúc 19:52

a) Xét \(\Delta ABC\) có M là trung điểm của AC

                            E là trung điểm của BC 

=> EM là đường trung bình của \(\Delta ABC\)

=> EM//AB ; \(EM=\dfrac{1}{2}AB=\dfrac{1}{2}.8=4\left(cm\right)\)

Vậy EM = 4cm

b) Xét tứ giác AMEB có EM//AB

=> tứ giác AMEB là hình thang

Vậy tứ giác AMEB là hình thang

c) Xét \(\Delta ABC\)  vuông tại A có \(AB^2+AC^2=BC^2\)

                                             => \(BC^2=8^2+6^2\)

                                             => \(BC=\sqrt{100}=10\left(cm\right)\)

=> EB = 5(cm) (Vì E là trung điểm BC)

Có \(P_{AMEB}=AM+EM+EB+AB\)

                  \(=\dfrac{AC}{2}+4+5+8\)

                   \(=3+4+5+8\)

                  \(=20\left(cm\right)\) 

Vậy \(P_{AMEB}=20\left(cm\right)\)

Câu trên hỏi tứ giác AMEB là hình gì, câu dưới hỏi hình thang AMEB, đề bài hài hước thật :))

Chúc bạn học tốt 

Hường Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 10 2021 lúc 23:07

a: Xét ΔABC có 

M là trung điểm của AC

N là trung điểm của BC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//AB

hay AMNB là hình thang

mà \(\widehat{MAB}=90^0\)

nên AMNB là hình thang vuông

Trương Nguyễn Ngọc Như
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 1 2023 lúc 8:06

a: Xét tứ giác BECF có

D là trung điểm chung của BC và EF

BE=EC

Do đó: BECF là hình thoi

b: Sửa đề: Tính diện tích BECF

\(BC=\sqrt{10^2-8^2}=6\left(cm\right)\)

DE=AB/2=4cm

=>EF=8cm

\(S_{BECF}=\dfrac{1}{2}\cdot6\cdot8=3\cdot8=24\left(cm^2\right)\)

An Nguyễn
Xem chi tiết
Thanh Hoàng Thanh
2 tháng 12 2021 lúc 10:08

Bài 1:

a) Xét tam giác ABC vuông tại A có: 

+ D là trung điểm của AB (gt).

+ E là trung điểm của AC (gt).

=> DE là đường trung bình (Định nghĩa đường trung bình trong tam giác).

=> DE = \(\dfrac{1}{2}\)BC (Tính chất đường trung bình trong tam giác).

Mà BC = 10 cm (gt).

=> DE = 5 cm.

Vậy DE = 5 cm.

b) Xét tam giác ABC vuông tại A có: 

DE là đường trung bình (cmt)

=> DE // BC (Tính chất đường trung bình trong tam giác).

Ta có: F là trung điểm của BC (gt). => BF = CF = \(\dfrac{1}{2}\)BC.

Mà DE = \(\dfrac{1}{2}\)BC (cmt).

=> BF = CF = DE = \(\dfrac{1}{2}\)BC.

Xét tứ giác BDEF có: 

+ BF = DE (cmt).

+ BF // DE (do DE // BC).

=> Tứ giác BDEF là hình bình hành (dhnb).

c) Xét tam giác ABC vuông tại A:

+ D là trung điểm của AB (gt).

+ F là trung điểm của BC (gt).

=> DF là đường trung bình (Định nghĩa đường trung bình trong tam giác).

=> DF // AC  và DF = \(\dfrac{1}{2}\)AC (Tính chất đường trung bình trong tam giác). 

Ta có: DF = \(\dfrac{1}{2}\)AC (cmt).

Mà AE = CE = \(\dfrac{1}{2}\)AC (E là trung điểm AC).

=> AE = CE = DF = \(\dfrac{1}{2}\)AC.

Xét tứ giác ADEF có:

+ AE = DF (cmt).

+ AE // DF (do DF // AC).

=> Tứ giác ADEF là hình bình hành (dhnb).

Mà ^DAE = 90o (do tam giác ABC vuông tại A).

=> Tứ giác ADEF là hình chữ nhật (dhnb).

d) Gọi I là giao điểm của AF và DE.

Xét hình chữ nhật ADEF có: I là giao điểm của AF và DE (cách vẽ).

=> I là trung điểm của AF và DE (Tính chất hình chữ nhật). (1)

Ta có: G là điểm đối xứng của F qua D (gt).

=> D là trung điểm của CG.

=> DF = \(\dfrac{1}{2}\)GF.

Mà DF = \(\dfrac{1}{2}\)AC (cmt).

=> GF = AC.

Xét tứ giác GACF có:

+ GF = AC (cmt).

+ GF // AC (do DF // AC).

=> Tứ giác GACF là hình bình hành (dhnb).

=> Giao điểm của 2 đường chéo AF và GC là trung điểm mỗi đường (Tính chất hình bình hành).

Mà I là trung điểm của AF (cmt)

=> I là trung điểm của GC (2).

Từ (1) và (2) => Các đường thẳng AF; GC; DE cùng cắt nhau tại điểm I.

hay các đường thẳng AF; GC; DE cùng cắt nhau tại trung điểm mỗi đường (đpcm).

Cao Thanh Tuyền Đoàn
Xem chi tiết
Thanh Hoàng Thanh
2 tháng 12 2021 lúc 11:39

a) Xét tam giác ABC vuông tại A có: 

+ E là trung điểm của AB (gt).

+ F là trung điểm của AC (gt).

=> EF là đường trung bình (định nghĩa đường trung bình trong tam giác).

=> 2EF = BC (Tính chất đường trung bình trong tam giác).

=> 2.4 = 8 (cm).

b) Xét tứ giác AECM có:

+ F là trung điểm của EM (do M là điểm đối xứng của E qua F).

+ F là trung điểm của AC (gt).

=> Tứ giác AECM là hình bình (dhnb).

Hồ Thị Hoài Nhung
Xem chi tiết
hazzymoon
14 tháng 6 2017 lúc 17:05

bài 3:

D,                 bài giải 

diện tích là:

                (8x5):2=20(cm2)

                          Đ/S:20cm2

Nguyễn Huy Tú
22 tháng 11 2020 lúc 18:04

Bài 2 : 

A B C D M E

a, Xét tam giác ABC ta có : 

D là trung điểm AB

M là trung điểm CB 

=)) DM là đường TB tam giác ABC 

=)) DM // AC hay DM // AE (1) 

Ta có : E là trung điểm AC 

M là trung điểm BA 

=)) EM là đường TB tam giác ABC 

=)) EM // AB hay EM // AD (2)

 Từ 1;2 =)) Tứ giác ADME là hình bình hành 

b, Nếu tam giác ABC cân tại A => AM là đường trung tuyến AM 

=)) AM đồng thời là tia phân giác của ^A 

Xét hình bình hành ADME có 2 đường chéo AM là tia phân giác của ^A (cmt)

=)) Tứ giác  ADME là hình thoi 

c, Nếu tam giác ABC vuông tại A => ^A = 90^0

Xét hình bình hành ADME có ^A =90^0

=)) Tứ giác ADME là hình chữ nhật 

Khách vãng lai đã xóa
Nguyễn Huy Tú
22 tháng 11 2020 lúc 18:14

A B C D E F K

a, Xét hình thang ABCD có : 

E là trung điểm AD => AE = ED 

F là trung điểm BC => BF = FC 

=)) EF là đường trung bình hình thang ABCD 

Xét tam giác ADC có : 

E là trung điểm AD

K là trung điểm AC 

=)) EK // DC 

=)) EK là đường trung bình tam giacs ADC 

=)) AK = KC (đpcm)

b, Ta có EK là đường trung bình tam giác ADC ( cmt )

\(EK=\frac{DC}{2}=\frac{10}{2}=5\)cm 

EF là đường trung bình hình thang ABCD ( cmt )

\(EF=\frac{AB+CD}{2}=\frac{10+4}{2}=7\)cm 

Ta có : \(EK+KF=EF\Leftrightarrow KF=EF-EK\)

\(\Leftrightarrow KF=7-5=2\)cm 

Vậy EK = 5 cm ; KF = 2 cm 

Khách vãng lai đã xóa
Hồ Thị Hoài Nhung
Xem chi tiết
anh tuấn
15 tháng 12 2016 lúc 20:17

2/

a/ hình thang ABCD có

AB // EF

==> AB // KF

xét tam giác ABC có

F là trung điểm của BC

AB // KF

==> KF là đường trung bình của tam giác ABC

==> K là trung điểm của AC

==> AK = KC

b/

E là trung điểm AD

F là trung điểm BC

==> EF là đường trung bình của hình thang ABCD

==> EF = (AB + CD) / 2 = (4 + 10) / 2 = 7(cm)

KF là đường trung bình của tam giác ABC nên

KF = AB / 2 = 4 / 2 = 2(cm)

==> EK = EF - KF = 7 - 2 = 5(cm)

vậy EK = 5(cm), KF = 2 (cm)

3/

a/ ta có

D là trung điểm của AB

M là trung điểm của BC

==> DM là đường trung bình của tam giác ABC

==> Dm // AC

==> DM // AE ( E thuộc AC, DM // AC)

chứng minh tương tự ta có

ME là đường trung bình của tam giác ABC

==> AD // ME

tứ giác ADME có DM // AE, AD // ME nên là HBH

b/ ( nếu tam giác ABC cân tại A)

tam giác ABC cân tại A ==> AB = AC

AD = 1/2 AB (D là trung điểm của AB)

AE = 1/2 AC (E là trung điểm của AC)

==> AD = AE

c/ (nếu tam giác ABC vuông)

ta có

tứ giác ADME là HBH

góc A = 90 độ

==> tứ giác ADME là HCN

d/ ta có

AB^2 + AC^2 = BC^2

6^2 + 8^2 = 100

==> BC = 10(cm)

AM là đường trung tuyến của tam giác ABC

==> AM = 1/2 BC = 1/2 . 10 = 5(cm)

vậy AM = 5cm

 

Lê Việt Anh
31 tháng 1 2017 lúc 13:49

Bài 2:Cho mk ý kiến,sai đề à???4cm=6cm nhé

Ôn tập toán 8

Bài 3:

Ôn tập toán 8

Bài 4:

Nối D với E, nối D với M:
Chứng minh được ED//FB (BEDF là hình thoi) (1)
BF là đường trung bình tam giác AMD
=> MD//FB (tc) (2)
(1),(2) => MD trùng với ED (định lý) ( Qua 1 điểm ko thuộc đường thẳng a có 1 và chỉ 1 đường thẳng đi qua điểm đó và song song với đường thẳng a )
từ đó bạn có thể cm BMCD là hình chữ nhật ( nếu cần )
( xét từ1 giác BDCM có BC cắt DM tại trung điểm của mỗi đoạn ->BMCD là Hình chữ nhật)

Bài 5:

Ôn tập toán 8


Trần Thiên Kim
11 tháng 12 2016 lúc 21:23

Đăng từng bài thoy pn ey

mun dieu da
Xem chi tiết