tìm x, biết
a.x2+x=6
b.6x3+x2=2x
Bài 2: Tìm x , biết
a) 6x3 + x2 : 2x - 3x + 2 = 0 b) 5x4 - 3x2 : x2 - x(5x + 6) = 0
Bài 2: Tìm x , biết
a) 6x3 + x2 : 2x - 3x + 2 = 0 b) 5x4 - 3x2 : x2 - x(5x + 6) = 0
Bạn xem đã viết đúng đề chưa vậy?
Tìm a để P(x) chia hết cho Q(x)
a) P(x) = 4x2-6x+a, Q (x) = x - 3
b) P(x) = 2x2+x+a, Q(x) = x+3
c) P(x) = x3+a.x2-4, Q(x) = x2+4x+4
d) P(x) = 2x2+a.x+1, Q(x) = x-3
e) P(x) = a.x5+5x4-9, Q(x) = x-1
f) P(x) = 6x3-x2-23x+a, Q(x) = 2x+3
g) P(x) = x3-6x2+ax-6, Q(x) = x-2
h) P(x) = x3-5x2-(a-2).x+b, Q(x)= x2-3x+2
giúp e vs ạ
a) P(x)=4x2-6x+a; Q(x)=x-3
Lấy P(x):Q(x)=4x-6 dư a+30
Vậy để P(x)⋮Q(x) ⇒ a+30=0 ⇒ a=-30
b) P(x)=2x2+x+a; Q(x)=x+3
Lấy P(x):Q(x)=2x-7 dư a+21
Vậy để P(x)⋮Q(x) ⇒ a+21=0 ⇒ a=-21
c) P(x)=x3+ax2-4; Q(x)=x2+4x+4
Lấy P(x):Q(x)=x+a-4 dư -4(a-5)x+12
Vậy để P(x)⋮Q(x) ⇒ -4(a-5)x+12=0 ⇒ (a-5)x=3
⇒ a-5 ϵ {-1;1;-3;3} (a ϵ Z)
⇒ a ϵ {4;6;2;8}
d) P(x)=2x2+ax+1; Q(x)=x-3
Lấy P(x):Q(x)=2x+a+6 dư 3a+19
Vậy để P(x)⋮Q(x) ⇒ 3a+19=0 ⇒ a=-19/3
e) P(x)=ax5+5x4-9; Q(x)=x-1
Lấy P(x):Q(x)=ax4+(a-5)x3+(a-5)x2+(a-5)x+1 dư a-4
Vậy để P(x)⋮Q(x) ⇒ a-4=0 ⇒ a=4
f) P(x)=6x3-x2-23x+a; Q(x)=2x+3
Lấy P(x):Q(x)=3x2-5x-4 dư a+12
Vậy để P(x)⋮Q(x) ⇒ a+12=0 ⇒ a=-12
g) P(x)=x3-6x2+ax-6 Q(x)=x-2
Lấy P(x):Q(x)=x2-2x+a-4 dư 2(a-4)-6
Vậy để P(x)⋮Q(x) ⇒ 2(a-4)-6=0 ⇒ a=7
Bài h có a,b bạn xem lại đề
Tìm x, biết:
a) ( 6x3+x2) : 2x - 3x (x-1)+2=0
b) (5x4-3x2) : x2-x(5x+6)=0
Lời giải:
a.
PT $\Leftrightarrow 3x^2+\frac{x}{2}-3x^2+3x+2=0$
$\Leftrightarrow \frac{7}{2}x+2=0$
$\Leftrightarrow \frac{7}{2}x=-2$
$\Leftrightarrow x=-2: \frac{7}{2}=\frac{-4}{7}$
b.
PT $\Leftrightarrow 5x^2-3-5x^2-6x=0$
$\Leftrightarrow -3-6x=0$
$\Leftrightarrow 6x=-3$
$\Leftrightarrow x=\frac{-3}{6}=\frac{-1}{2}$
Bài 9.Rút gọn biểu thức
a)-5x2+3x.(x+2)
b)-2x.(1-x2)-2x3
c)4x.(x-1)-4(x2+2x-1)
d)6x3-2x2(-x2-3x)
e)3x(x-1)-(1+2x).5x
f)-5x2-(x-6).(-2x2)
Giúp mình với mn
\(a\\ -5x^2+3x.\left(x+2\right)=-5x^2+3x^2+6x=-2x^2+6x\\ b\\ -2x.\left(1-x^2\right)-2x^3=-2x+2x^3-2x^3=-2x\\ c\\ 4x.\left(x-1\right)-4.\left(x^2+2x-1\right)\\ =4x^2-4x-4x^2-8x+4=-12x+4\)
\(d\\ 6x^3-2x^2.\left(-x^2-3x\right)=6x^3+2x^4+6x^3=2x^4+12x^3\\ e\\ 3x.\left(x-1\right)-\left(1+2x\right).5x\\ =3x^2-3x-5x-10x^2=-7x^2-8x\\ f\\ -5x^2-\left(x-6\right).\left(-2x^2\right)=-5x^2+2x^3-12x^2=2x^3-17x^2\)
Bài 2: Tính
a) ( x4 - x3 + x2 + 3x ) : ( x2 - 2x + 3 )
b) ( 21x2y3 ) : ( 6xy)
c) x2- 36 : ( 2x + 10) ( 6 - x )
d) 2x2 ( 3x - 5 )
e) ( 12x3y + 18x2y) : 2xy
g) ( x2 + 2x + 1 ) : ( x + 1 )
h) 5y ( 2y - 1 ) - ( 3y + 2 ) ( 3 - 3y)
i) ( 6x3 - x2 + 5x - 1 ) : ( 2x - 1 )
`@` `\text {Ans}`
`\downarrow`
*Máy tớ cam hơi mờ, cậu thông cảm ._.*
Cậu viết lại rõ đề câu c, nhé.
Cho 2 đa thức :
N (x) = x2 + 3x4 - 2x - x2 + 2x3
P (x) = -8 + 5x - 6x3 - 4x + 6
A) rút gọn đa thức N (x) , P (x) và xác định bậc của chúng
B) Tính N(x) + P(x)
C) Tính B(x) = -2x2 ( x3 - 2x + 5x2 -1 )
\(a,N\left(x\right)=x^2+3x^4-2x-x^2+2x^3=3x^4+2x^3+\left(x^2-x^2\right)-2x\\ =3x^4+2x^3-2x\\ P\left(x\right)=-8+5x-6x^3-4x+6=-6x^3+\left(5x-4x\right)+\left(-8+6\right)\\ =-6x^3+x-2\)
Bậc của N(x) là 4
Bậc của P(x) là 3
\(b,P\left(x\right)+N\left(x\right)=3x^4+2x^3-2x-6x^3+x-2\\ =3x^4+\left(2x^3-6x^3\right)+\left(-2x+x\right)-2\\ =3x^4-4x^3-x-2\)
\(c,B\left(x\right)=-2x^2\left(x^3-2x+5x^2-1\right)\\ =\left(-2x^2\right).x^3+\left(-2x^2\right).\left(-2x\right)+\left(-2x^2\right).5x^2+\left(-2x^2\right).\left(-1\right)\\ =-2x^5+4x^3-10x^4+2x^2\\ =-2x^5-10x^4+4x^3+2x^2\)
a) ( 6x3 - 7x2 - x + 2 ) : ( 2x + 1 )
b) ( x4 - x3 + x2 + 3x ) : ( x2 - 2x + 3 )
\(a,=\left(6x^3+3x^2-10x^2-5x+4x+2\right):\left(2x+1\right)\\ =\left(2x+1\right)\left(3x^2-5x+2\right):\left(2x+1\right)=3x^2-5x+2\\ b,=\left(x^4-2x^3+3x^2+x^3-2x^2+3x\right):\left(x^2-2x+3\right)\\ =\left(x^2-2x+3\right)\left(x^2+x\right):\left(x^2-2x+3\right)=x^2+x\)
Tìm x
a,(x+2)2-2x(2x+3)=(x+1)2
b,6x3+x2=2x
c,x8-x5+x2-x+1=0
Bn viết kiểu gì vậy,6x3 là 18x hay là 6x\(^3\)
Cho em hỏi:
A(x) = 6x3 - x - 1
B(x) = 5x3 - 2x + x2 - 1
a) Tính: P(x) = A(x) + B(x).
b) Tính: Q(x) = A(x) - B(x).
c) Tính U(x) biết 2U(x) + 3A(x) = B(x).
Nhiêu đó thôi ạ!
a: \(P\left(x\right)=6x^3-x-1+5x^3+x^2-2x-1=11x^3+x^2-3x-2\)
b: \(Q\left(x\right)=6x^3-x-1-5x^3-x^2+2x+1=x^3-x^2+x\)
c: \(2\cdot U\left(x\right)=5x^3-2x+x^2-1-3\cdot\left(6x^3-x-1\right)\)
\(\Leftrightarrow2\cdot U\left(x\right)=5x^3+x^2-2x-1-18x^3+3x+3\)
\(\Leftrightarrow2\cdot U\left(x\right)=-13x^3+x^2+x+2\)
hay \(U\left(x\right)=-\dfrac{13}{2}x^3+\dfrac{1}{2}x^2+\dfrac{1}{2}x+1\)
\(a,P\left(x\right)=A\left(x\right)+B\left(x\right)=6x^3-x-1+5x^3-2x+x^2-1=11x^3+x^2+x-2\)
\(b,Q\left(x\right)=A\left(x\right)-B\left(x\right)=6x^3-x-1-5x^3+2x-x^2+1=x^3-x^2+x\)
c, Ta có : \(2U\left(x\right)+2A\left(x\right)=B\left(x\right)\)
hay \(2U\left(x\right)+2\left(6x^3-x-1\right)=5x^3-2x+x^2-1\)
\(\Rightarrow2U\left(x\right)+12x^3-2x-2=5x^3-2x+x^2-1\)
\(\Rightarrow2U\left(x\right)=5x^3-2x+x^2-1-12x^3+2x+2\)
\(\Rightarrow U\left(x\right)=-7x^3+x^2+1\)