Phân tích các đa thức sau thành nhân tử:
a, 1- 2m + 2np + m2 - n2 - p2
b, 3a2 - 6ab + 3b2 - 12c2
Bài 1 : Phân tích các đa thức sau thành nhân tử
a) m3p + m2np - m2p2 - mnp2
b) ab( m2 + n2 ) + mn( a2 + b2 )
Bài 2 : Phân tích các đa thức sau thành nhân tử
a) (xy + ab )2 + ( ay - bx )2
b) m2( n - p ) + n2( p - m ) + p2?( m - n )
Bài 3 : Tìm y để giá trị của biểu thức 1 + 4y - y2 là lớn nhất
Bài 4 : Tìm x , biết : ( x3 - x2 ) - 4x2 + 8x - 4 = 0
Bài 5 : Phân tích đa thức sau thành nhân tử
A = ( a + b + c )3 - ( a + b - c )3 - ( b + c - a )3 - ( c + a - b )3
Bài 4:
Ta có: \(\left(x^3-x^2\right)-4x^2+8x-4=0\)
\(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Bài 2 : Phân tích các đa thức sau thành nhân tử
a) (xy + ab )2 + ( ay - bx )2
b) m2( n - p ) + n2( p - m ) + p2?( m - n )
a: \(\left(xy+ab\right)^2+\left(bx-ay\right)^2\)
\(=x^2y^2+a^2b^2+x^2b^2+a^2y^2\)
\(=x^2\left(b^2+y^2\right)+a^2\left(b^2+y^2\right)\)
\(=\left(b^2+y^2\right)\left(x^2+a^2\right)\)
phân tích các đa thức sau thành nhân tử
A = \(9a^2+b^2-6ab-1\)
\(A=9a^2-6ab+b^2-1\)
\(A=\left(3a-b\right)^2-1\)
\(A=\left(3a-b-1\right)\left(3a-b+1\right)\)
P/s haphuong
phân tích đa thức thành nhân tử
a) 3abc3-6a2b3c+12a3bc
b) 27-8y3
c) 4x2+4x-y2+11
d) 3a2(x-2)-6ab(2-x)
a: \(3abc^3-6a^2b^3c+12a^3bc\)
\(=3abc\cdot c^2-3abc\cdot2ab^2+3abc\cdot4a^2\)
\(=3abc\left(c^2-2ab^2+4a^2\right)\)
b: \(27-8y^3\)
\(=3^3-\left(2y\right)^3\)
\(=\left(3-2y\right)\left(9+6y+4y^2\right)\)
c: Sửa đề: \(4x^2+4x-y^2+1\)
\(=\left(4x^2+4x+1\right)-y^2\)
\(=\left(2x+1\right)^2-y^2\)
\(=\left(2x+1+y\right)\left(2x+1-y\right)\)
d: \(3a^2\cdot\left(x-2\right)-6ab\cdot\left(2-x\right)\)
\(=3a^2\cdot\left(x-2\right)+6ab\cdot\left(x-2\right)\)
\(=\left(x-2\right)\left(3a^2+6ab\right)\)
\(=3a\left(a+2b\right)\left(x-2\right)\)
4/ Ph©n tÝch c¸c ®a thøc sau thµnh nh©n tö:
a) x2 - y2 - 2x + 2y b)2x + 2y - x2 - xy
c) 3a2 - 6ab + 3b2 - 12c2 d)x2 - 25 + y2 + 2xy
e) a2 + 2ab + b2 - ac - bc f)x2 - 2x - 4y2 - 4y g) x2y - x3 - 9y + 9x h)x2(x-1) + 16(1- x)
n) 81x2 - 6yz - 9y2 - z2 m)xz-yz-x2+2xy-y2 p) x2 + 8x + 15 k) x2 - x - 12
l) 81x2 + 4
a,x2-y2-2x+2y
= (x+y)(x-y) - 2(x-y)
= (x-y)(x+y-2)
b,2x+2y-x2-xy
= 2(x+y) - x(x+y)
= (x+y)(2-x)
c,3a2-6ab+3b2-12c2
= 3(a2 - 2ab + b2 - 4c2)
= 3[(a-b)2 - 4c2)
= 3(a-b-2c)(a-b+2c)
d,x2-25+y2+2xy
= (x+y)2 - 25
= (x+y+5)(x+y-5)
e) a2+2ab+b2-ac-bc
= (a+b)2-c(a+b)
= (a+b)( a+b-c)
f) x2-2x-4x2-4y
= -3x2-2x-4y
= -(3x2+2x+4y)
g)x2y-x3-9y+9x
= x2(y-x)-9(y-x)
= (y-x)(x2-9)
h) x2(x-1)+16(1-x)
= x2(x-1)-16(x-1)
= (x-1)(x2-16)
= (x-1)(x-4)(x+4)
n) 81x2-6yz-9y2-z2
= (9x)2-[(3y)2+6yz+z2]
=(9x)2-(3y+z)2
=(9x+3y+z)(9x-3y-z)
m) xz- yz-x2+2xy-y2
= z(x-y)-(x2-2xy+y2)
= z(x-y)-(x-y)2
= (x-y)(z-x+y)
p) x2 + 8x + 15
= x2 + 3x + 5x + 15
= x(x+3) + 5(x+3)
= (x+3)(x+5)
k) x2 - x - 12
= x2 + 3x - 4x - 12
= x(x+3) - 4(x+3)
= (x+3)(x-4)
Bài 1 : Phân tích các đa thức sau thành nhân tử
a) m3p + m2np - m2p2 - mnp2
b) ab( m2 + n2 ) + mn( a2 + b2 )
a) \(=mp\left(m^2+mn-mp-np\right)=mp\left[m\left(m+n\right)-p\left(m+n\right)\right]=mp\left(m+n\right)\left(m-p\right)\)
b) \(=abm^2+abn^2+a^2mn+b^2mn=am\left(bm+an\right)+bn\left(bm+an\right)\)
\(=\left(bm+an\right)\left(am+bn\right)\)
Phân tích các đa thức sau thành nhân tử:
a) 5 x 3 - 3 x 2 y - 45x y 2 + 27 y 3 ;
b) 3 x 2 (a - b + c) + 36xy(a - b + c) + 108 y 2 (a - b + c);
c) x 2 -2xy + y 2 - 4 m 2 + 4mn - n 2
a) (5x - 3y)(x - 3y)(x + 3y).
b) 3(a – b + c) ( x + 6 y ) 2 .
c) (x-y-2m + n)(x-y + 2m-n)
Phân tích các đa thức sau thành nhân tử:
a ) a + b 2 – m 2 + a + b – m
a) (a + b)2 – m2 + a + b – m = (a + b + m)(a + b – m) + (a + b – m)
= (a + b – m)(a + b + m + 1)
phân tích đa thức thành nhân tử: 5a2-3b2-14ab
\(5a^2-14ab-3b^2\\ =5a^2-15ab-ab-3b^2\\ =5a\left(a-3b\right)-b\left(a-3b\right)\\ =\left(5a-b\right)\left(a-3b\right)\)
\(5a^2-14ab-3b^2\)
\(=5a^2-15ab+ab-3b^2\)
\(=5a\left(a-3b\right)+b\left(a-3b\right)\)
\(=\left(a-3b\right)\left(5a+b\right)\)
Phân tích đa thức thành nhân tử : a^3+b^3+6ab-8