a) (a + b)2 – m2 + a + b – m = (a + b + m)(a + b – m) + (a + b – m)
= (a + b – m)(a + b + m + 1)
a) (a + b)2 – m2 + a + b – m = (a + b + m)(a + b – m) + (a + b – m)
= (a + b – m)(a + b + m + 1)
Bài 2 : Phân tích các đa thức sau thành nhân tử :
a) x2 - ( m + n )x + mn
b) ax + by + a - bx - ay - b
Bài 1 : Phân tích các đa thức sau thành nhân tử
a) m3p + m2np - m2p2 - mnp2
b) ab( m2 + n2 ) + mn( a2 + b2 )
Bài 2 : Phân tích các đa thức sau thành nhân tử
a) (xy + ab )2 + ( ay - bx )2
b) m2( n - p ) + n2( p - m ) + p2?( m - n )
Bài 3 : Tìm y để giá trị của biểu thức 1 + 4y - y2 là lớn nhất
Bài 4 : Tìm x , biết : ( x3 - x2 ) - 4x2 + 8x - 4 = 0
Bài 5 : Phân tích đa thức sau thành nhân tử
A = ( a + b + c )3 - ( a + b - c )3 - ( b + c - a )3 - ( c + a - b )3
Phân tích các đa thức sau thành nhân tử ( a b - 1 ) 2 + ( a + b ) 2
Phân tích các đa thức sau thành phân tử pp đặt nhân tử chung 2ab^2 - a^2b - b^3
Bài 2 : Phân tích các đa thức sau thành nhân tử: a) A = ab(a - b) + bc ( b - c) + ac ( c - a) .
Bài 1 Phân tích đa thức thành nhân tử
a) x4 - 6x3 + 54x2 - 81
b) x2 - y2 + 4x + 4
c) 4x2 - y2 + 8(y - 2)
Bài 2: Cho đa thức M = a ( b + c ) + b ( a2 + c2 ) + c ( a2 + b2 )
a) Chứng minh đa thức M thành nhân tử.
b) Phân tích đa thức M thành nhân tử bằng nhiều cách
1.xác đinh hệ số a,b sao cho f(x)=c2-a2-b2-2ab
a) Phân tích đa thức thành nhân tử
b) CMR: Nếu a,b,c là các cạnh của tam giác thì M>0
2. Phân tích đa thức sau thành nhân tử :
a/ x2-25+3.(x-5)2
b/ 8x2+10x-3
c/ 8x2-2x+1
Bài 2 : Phân tích các đa thức sau thành nhân tử
a) (xy + ab )2 + ( ay - bx )2
b) m2( n - p ) + n2( p - m ) + p2?( m - n )
Phân tích các đa thức sau thành nhân tử x 3 + 2 x 2 + 2 x + 1 ( a b - 1 ) 2 + ( a + b ) 2