cho tam giác ABC vuông tại A, đường cao AH C/m AC^2 = AB^2 +BC^2 - 2AB. cosB
cho tam giác abc vuông tại a , đường cao ah , đặt ab = c , ac =b , bc = a .
a) chứng minh ah =a sina cosb ; bh = a cos ^2 b , ch = a. sin^2b
b) từ đó suy ra : ab^2 = bc . bh , ah^2= bh.ch
cho tam giác abc vuông tại a ab=8cm ac=6cm A) tính bc B) tính sinc,cosb C) Kẻ đường thẳng cao AH(H€aBC) tính AH,BH,CH
a: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=8^2+6^2=100\)
=>\(BC=\sqrt{100}=10\left(cm\right)\)
b: Xét ΔABC vuông tại A có \(sinC=\dfrac{AB}{BC}\)
=>\(sinC=\dfrac{8}{10}=\dfrac{4}{5}\)
Xét ΔABC vuông tại A có \(\widehat{B}+\widehat{C}=90^0\)
=>\(cosB=sinC=\dfrac{4}{5}\)
c: Ta có: ΔABC vuông tại A
=>\(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot10=6\cdot8=48\)
=>AH=48/10=4,8(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}BH\cdot BC=BA^2\\CH\cdot BC=CA^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{8^2}{10}=6,4\left(cm\right)\\CH=\dfrac{6^2}{10}=3,6\left(cm\right)\end{matrix}\right.\)
Cho tam giác ABC nhọn, đường cao AH( H thuộc BC). Vẽ HD vuông AB tại D, HE vuông AC tại E.
a) C/m tam giác AHB đồng dạng tam giác ADH và AH^2=AD.AB
b) C/m AD. AB= AE.AC
c) Tam giác ADE đồng dạng tam giác ACB
d) Đường phân giác góc AHB cắt AB tại M cho MB=2AB/5. Tính DA/DB.
bài 1: tam giác ABC vuông tại A đường cao AB/AC =3/4; BC= 10. tính AH, BH
bài 2: cho tam giác ABC vuông tại A đường cao AH=33,6 biết AB/AC =27/4 tính các cạnh của tam giác ABC
bài 3: cho tam giác ABC vuông tại A đường cao AH tính đường cao AH,AB,AC nếu biết BH=36; CH=64
1
\(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3}{.4}AC\)
Theo pytago xét tam giác ABC vuông tại A có:
\(\sqrt{AB^2+AC^2}=BC^2\\ \Rightarrow\sqrt{\left(\dfrac{3}{4}AC\right)^2+AC^2}=10\\ \Rightarrow AC=8\\ \Rightarrow AB=\dfrac{3.8}{4}=6\)
Theo hệ thức lượng xét tam giác ABC vuông tại A, đường cao AH có:
\(AB^2=BH.BC\\ \Leftrightarrow BH=\dfrac{AH^2}{BC}=\dfrac{6^2}{10}=3,6\)
2
\(\dfrac{AB}{AC}=\dfrac{27}{4}\Rightarrow AB=\dfrac{27}{4}AC\)
\(BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\dfrac{27}{4}AC\right)^2+AC^2}=\dfrac{\sqrt{745}AC}{4}\) ( Theo pytago trong tam giác ABC vuông tại A)
Theo hệ thức lượng trong tam giác ABC vuông tại A, đường cao AH có:
\(AH.BC=AB.AC\\ \Leftrightarrow33,6.\dfrac{\sqrt{745}}{4}AC=\dfrac{27}{4}AC.AC\\ \Rightarrow AC=\dfrac{56\sqrt{745}}{45}\)
\(\Rightarrow\left\{{}\begin{matrix}AB=\dfrac{27}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{42\sqrt{745}}{5}\\BC=\dfrac{\sqrt{745}}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{2086}{9}\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}AC\approx33,97\\AB\approx229,28\\BC\approx231,78\end{matrix}\right.\)
3
`BC=HB+HC=36+64=100`
Theo hệ thức lượng có (trong tam giác ABC vuông tại A đường cao AH):
\(AH^2=HB.HC\\ \Rightarrow AH=\sqrt{36.64}=48\)
\(AB=\sqrt{HB.BC}=\sqrt{36.100}=60\\ AC=\sqrt{HC.BC}=\sqrt{64.100}=80\)
Cho tam giác ABC vuông tại A, đường cao AH ( H thuộc BC ), AB = 6cm, BC = 10cm. a) Tính AC, cosB b) Tính số đo góc BÂH.
a) Áp dụng định lý Pytago:
\(BC^2=AB^2+AC^2\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{10^2-6^2}=8\left(cm\right)\)
Áp dụng tslg:
\(cosB=\dfrac{AB}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\)
b) Áp dụng HTL :
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Rightarrow AH=\sqrt{\dfrac{1}{\dfrac{1}{AB^2}}+\dfrac{1}{\dfrac{1}{AC^2}}}=\sqrt{\dfrac{1}{\dfrac{1}{6^2}+\dfrac{1}{8^2}}}=4,8\left(cm\right)\)
Áp dụng tslg:
\(cosBAH=\dfrac{AH}{AB}=\dfrac{4,8}{6}\Rightarrow\widehat{BAH}\approx37^0\)
Cho tam giác ABC vuông tại A có AB<AC, đường cao AH. Trên BC lấy M sao cho BA = BM. Từ M kẻ MN vuông góc với AC tại N. CMR:
a) Tam giác ANH cân
b) BC + AH < AB + AC.
c) 2AC^2 - BC^2 = CH^2 - BH^2
Cho tam giác ABC vuông tại A đường cao AH chứng minh rằng a. Tam giác ABC đồng dạng với tam giác AC b. AB. AC = AH. BC c. 1/Ah^2 = 1/AB^2 + 1/AC^2
a) Xét tam giác ABC và tam giác HAC có:
BAC = AHC =90
ABC = HAC (cùng phụ với HAB)
=> ABC đồng dạng HAC (g.g)
b) Vì ABC đồng dạng HAC
=> AB/BC = AH/AC
=> AB.AC=BC.AH
c) Vì AB.AC = BC.AH
=> AB^2.AC^2= BC^2 . AH^2
Mà BC^2=AB^2+AC^2 (định lý pytago ở tam giác ABC vuông tại A)
=> AB^2.AC^2= (AB^2+AC)^2.AH^2
=> 1/AH^2 =1/AB^2 +1/AC^2
Cho tam giác ABC vuông tại A,đường cao AH. Gọi M,N lần lượt là hình chiếu vuông góc của H lên AB và AC. a, biết AC bằng 16 cm, sinCAH=4/5. Tính độ dài các cạnh BC,AB và cosB b,chứng minh AM x AB = AN x AC và tam giác ABC đồng dạng với tam giác AMN. c, chứng minh MA x MB + NA × NC=HB×HC d, Chứng minh S AMN/ S ABC=sin²B×sin²C
b: Xét ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
Đề 1:
Cho tam giác ABC vuông tại A có AB = 30cm, đường cao AH = 24cm.
a) Tính BH, BC, AC.
b) Đường thẳng vuông góc với AB tại B cắt tia AH tại D. Tính BD
Đề 2:
Cho tam giác ABC vuông tại A, đường cao AH, biết AB = 15cm, BH = 9cm.
a) Tính AC, BC, và đường cao AH.
b) Gọi M là trung điểm của BC, tính diện tích của tam giác AHM.
Đề 1:
a: Xét ΔABH vuông tại H có
\(AB^2=AH^2+HB^2\)
hay HB=18(cm)
Xét ΔBCA vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AH^2=HB\cdot HC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BC=50\left(cm\right)\\HC=32\left(cm\right)\end{matrix}\right.\)
Xét ΔACH vuông tại H có
\(AC^2=AH^2+HC^2\)
nên AC=40(cm)
b: Xét ΔAHC vuông tại H và ΔDHB vuông tại H có
\(\widehat{HAC}=\widehat{HDB}\)
Do đó: ΔAHC\(\sim\)ΔDHB
Suy ra: \(\dfrac{AC}{DB}=\dfrac{HC}{HB}\)
hay \(DB=\dfrac{32}{18}\cdot40=\dfrac{640}{9}\left(cm\right)\)