a) \(\left(x-3\right)^2=49\)
b) \(x^{13}=27x^{10}\)
Tìm x, biết:
a) \(\left(x-3\right)^2=16\)
b) \(\left(1-3x\right)^3=-64\)
c) \(x^{13}=27x^{10}\)
d) \(\left(4x-1\right)^2=\left(1-4x\right)^4\)
Help :>> Nhanh nha
\(\left(x-3\right)^2=16\)
\(\Rightarrow\left(x-3\right)^2=4^2\)
\(\Rightarrow x-3=4\)
\(\Rightarrow x=4+3\)
\(\Rightarrow x=7\)
a,(x-3)^2=16
(x-3)^2=4^2
=>x-3=4
=>x=7
b,(1-3x)^3=-64
(1-3x)^3=-4^3
=>1-3x=-4
=>3x=5
=>x=5/3
Tìm x , biết :
a. \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=15\)
b. \(2x^3-50x=0\)
c.\(5x^2-4\left(x^2-2x+1\right)-5=0\)
d. \(x^3-x=0\)
e. \(27x^3-27x^2+9x-1=1\)
a) Ta có: \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=15\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6\left(x^2+2x+1\right)=15\)
\(\Leftrightarrow-6x^2+12x+19+6x^2+12x+6=15\)
\(\Leftrightarrow24x+25=15\)
\(\Leftrightarrow24x=-10\)
hay \(x=-\dfrac{5}{12}\)
b) Ta có: \(2x^3-50x=0\)
\(\Leftrightarrow2x\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
c) Ta có: \(5x^2-4\left(x^2-2x+1\right)-5=0\)
\(\Leftrightarrow5x^2-4x^2+8x-4-5=0\)
\(\Leftrightarrow x^2+8x-9=0\)
\(\Leftrightarrow\left(x+9\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-9\\x=1\end{matrix}\right.\)
d) Ta có: \(x^3-x=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
e) Ta có: \(27x^3-27x^2+9x-1=1\)
\(\Leftrightarrow\left(3x\right)^3-3\cdot\left(3x\right)^2\cdot1+3\cdot3x\cdot1^2-1^3=1\)
\(\Leftrightarrow\left(3x-1\right)^3=1\)
\(\Leftrightarrow3x-1=1\)
\(\Leftrightarrow3x=2\)
hay \(x=\dfrac{2}{3}\)
Tìm x
a)\(27x^3+27x^2+9x+1=64\) b)\(\left(x-2\right)^3-x^2\left(x-6\right)=4\) c)\(\left(x-1\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+3\left(x-2\right)\left(x+2\right)=2\)a) \(27x^3+27x^2+9x+1=64\)
\(\Rightarrow27x^3+27x^2+9x-63=0\)
\(\Rightarrow27x^3-27x^2+54x^2-54x+63x-63=0\)
\(\Rightarrow27x^2\left(x-1\right)+54x\left(x-1\right)+63\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(27x^2+54x+63\right)=0\)
\(\Rightarrow\left(x-1\right).9\left(3x^2+6x+7\right)=0\)
\(\Rightarrow\left(x-1\right)\left(3x^2+6x+7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\3x^2+6x+7=0\end{matrix}\right.\)
Mà ta có:
\(3x^2+6x+7\)
\(=3\left(x^2+2x+\dfrac{7}{3}\right)\)
\(=3\left(x^2+2x+1-1+\dfrac{7}{3}\right)\)
\(=3\left(x+1\right)^2+4\)
Vì \(3\left(x+1\right)^2\ge0\) với mọi x
\(\Rightarrow3\left(x+1\right)^2+4\ge4\)
\(\Rightarrow3x^2+6x+7\) vô nghiệm
\(\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
b) \(\left(x-2\right)^3-x^2\left(x-6\right)=4\)
\(\Rightarrow x^3-6x^2+12x-8-x^3+6x^2=4\)
\(\Rightarrow12x-8=4\)
\(\Rightarrow12x=12\)
\(\Rightarrow x=1\)
c) \(\left(x-1\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+3\left(x-2\right)\left(x+2\right)=2\)
\(\Rightarrow x^3-3x^2+3x-1-\left(x^3+3^3\right)+3\left(x^2-2^2\right)=2\)
\(\Rightarrow x^3-3x^2+3x-1-x^3-9+3x^2-12=2\)
\(\Rightarrow3x-22=2\)
\(\Rightarrow3x=24\)
\(\Rightarrow x=8\)
1) giải phương trình :
a) \(\left(2+3\right)\left(\dfrac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\dfrac{3x+8}{2-7x}+1\right)\)
b) \(\dfrac{7x+10}{x+1}\left(x^2-x-2\right)-\dfrac{7x+10}{x+1}\left(2x^2-3x-5\right)=0\)
c) \(\dfrac{2x+5}{x+3}+1=\dfrac{4}{x^2+2x-3}-\dfrac{3x-1}{1-x}\)
d) \(\dfrac{13}{2x^2+x-21}+\dfrac{1}{2x+7}+\dfrac{6}{9-x^2}=0\)
i) \(\dfrac{x-49}{50}+\dfrac{x-50}{49}=\dfrac{49}{x-50}+\dfrac{50}{x-49}\)
k) \(\dfrac{1+\dfrac{x}{x+3}}{1-\dfrac{x}{x+3}}=3\)
b: \(\Leftrightarrow\dfrac{7x+10}{x+1}\left(x^2-x-2-2x^2+3x+5\right)=0\)
\(\Leftrightarrow\left(7x+10\right)\left(-x^2+2x+3\right)=0\)
\(\Leftrightarrow\left(7x+10\right)\left(x^2-2x-3\right)=0\)
=>(7x+10)(x-3)=0
hay \(x\in\left\{-\dfrac{10}{7};3\right\}\)
d: \(\Leftrightarrow\dfrac{13}{2x^2+7x-6x-21}+\dfrac{1}{2x+7}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\dfrac{13}{\left(2x+7\right)\left(x-3\right)}+\dfrac{1}{\left(2x+7\right)}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow26x+91+x^2-9-12x-14=0\)
\(\Leftrightarrow x^2+14x+68=0\)
hay \(x\in\varnothing\)
1) giải pt :
a) \(\dfrac{7x+10}{x+1}\left(x^2-x-2\right)-\dfrac{7x+10}{x+1}\left(2x^2-3x-5\right)=0\)
b) \(\dfrac{13}{2x^2+x-21}+\dfrac{1}{2x+7}+\dfrac{6}{9-x^2}=0\)
c) \(\dfrac{x-49}{50}+\dfrac{x-50}{49}=\dfrac{49}{x-50}+\dfrac{50}{x-49}\)
d) \(\dfrac{1+\dfrac{x}{x+3}}{1-\dfrac{x}{x+3}}=3\)
a: \(\Leftrightarrow\dfrac{7x+10}{x+1}\left(x^2-x-2-2x^2+3x+5\right)=0\)
\(\Leftrightarrow\left(7x+10\right)\left(-x^2+2x+3\right)=0\)
\(\Leftrightarrow\left(7x+10\right)\cdot\left(x^2-2x-3\right)=0\)
=>(7x+10)(x-3)=0
=>x=3 hoặc x=-10/7
b: \(\Leftrightarrow\dfrac{13}{\left(2x+7\right)\left(x-3\right)}+\dfrac{1}{2x+7}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow13\left(x+3\right)+x^2-9-12x-42=0\)
\(\Leftrightarrow x^2-12x-51+13x+39=0\)
\(\Leftrightarrow x^2+x-12=0\)
=>(x+4)(x-3)=0
=>x=-4
1) giải phương trình:
a) \(\left(2x+3\right)\left(\frac{3x+8}{2-7x}+1\right)=\left(x+5\right)\left(\frac{3x+8}{2-7x}+1\right)\)
b) \(\frac{7x+10}{x+1}\left(x^2-x-2\right)-\frac{7x+10}{x+1}\left(2x^2-3x-5\right)=0\)
c) \(\frac{2x+5}{x+3}+1=\frac{4}{x^2+2x-3}-\frac{3x-1}{1-x}\)
d) \(\frac{13}{2x^2+x-21}+\frac{1}{2x+7}+\frac{6}{9-x^2}=0\)
e) \(\frac{x-49}{50}+\frac{x-50}{49}=\frac{49}{x-50}+\frac{50}{x-49}\)
f) \(\frac{1+\frac{x}{x+3}}{1-\frac{x}{x+3}}=3\)
1.Tìm x :
a,\(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{x\left(x+1\right)}=\frac{13}{90}\)
b,\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x\left(x+3\right)}=\frac{49}{148}\)
c,\(\frac{7}{\left(x+3\right)\left(x+10\right)}+\frac{11}{\left(x+10\right)\left(x+21\right)}\)\(+\frac{1}{\left(x+21\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
d,\(\frac{3}{\left(x-4\right)\left(x-7\right)}+\frac{6}{\left(x-7\right)\left(x-13\right)}\)\(+\frac{15}{\left(x-13\right)\left(x-28\right)}\)\(-\frac{1}{x-38}=\frac{-1}{20}\)
a, \(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{x\left(x+1\right)}=\frac{13}{90}\)
⇒ \(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{13}{90}\)
⇒ \(\frac{1}{5}-\frac{1}{x+1}=\frac{13}{90}\)
⇒ \(\frac{1}{x+1}=\frac{1}{5}-\frac{13}{90}\)
⇒ \(\frac{1}{x+1}=\frac{18}{90}-\frac{13}{90}\)
⇒ \(\frac{1}{x+1}=\frac{1}{18}\)
⇒ x + 1 = 18
⇒ x = 17
Vậy x = 17
b, \(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x\left(x+3\right)}=\frac{49}{148}\)
⇒ \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x\left(x+3\right)}=\frac{49.3}{148}\)
⇒ \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{147}{148}\)
⇒ \(1-\frac{1}{x+3}=\frac{147}{148}\)
⇒ \(\frac{1}{x+3}=1-\frac{147}{148}\)
⇒ \(\frac{1}{x+3}=\frac{1}{148}\)
⇒ x + 3 = 148
⇒ x = 145
Vậy x = 145
Tìm x thuộc Z, biết:
a. 1 + \(\left\{-2-[-3+\left(-4+\left|x\right|\right)]\right\}=1-2+[\left(-3-4\right)]\)
b. 34 + (9 - 21) = 3417 - (x + 3417)
c. x - \(\left\{55-[49+\left(-28-x\right)]\right\}=13-\left\{47+[25-\left(32-x\right)]\right\}\)
d. (15 - x) + (x - 12) = 7 - (-8 + x)
e. - 7 + \(\left|x-4\right|\) = - 3
f. 13 - \(|\)x + 5\(|\) = 13
g. \(|\)x + 1\(|\) > 2
h. \(|\)x + 2\(|\) ≤ 5
i. \(|\)x - 10\(|\) - (-12) = 4
27x^3/(x-1)^3+27x^3/(x-1)^3(x+1)+9x^3/(x-1)(x+1)^3+x^3/(x+1)^3
\(\frac{27x^3^{ }}{\left(x-1\right)^3}+\frac{27x^3}{\left(x-1\right)^2\left(x+1\right)}+\frac{9x^3}{\left(x-1\right)\left(x+1\right)^2}+\frac{x^3}{\left(x+1\right)^3}\)
Thu gọnTìm x để phân thức có giá trị là 64