cho tam giác ABC tìm điểm J sao cho vecto JA-JB-2JC=0
Cho tam giác ABC . Dựng các điểm I , J , K thỏa mãn điều kiện sau :
a) Vecto IA - 3 vecto IB = vecto AC
b) vecto JA - vecto JB + 2 vecto JC = 0
c) vecto KA + 2 vecto KB = 2 vecto CB
Mn giúp em với tại em đang cần gấp , tks :))
Cho tam giác ABC, lấy các điểm I, J sao cho vecto IC trừ vecto IB cộng vecto IA bằng 0 và vecto JA cộng vecto JB trừ đi ba lần vecto JC bằng 0
A,cmr:I,B và trọng tầm G của tam giác ABC thẳng hàng
B,cmr:vecto IJ song song với vecto AC.
Mong các bạn giúp mình vs:)
cho tam giác abc trọng tâm g 3vecto ja + 2 vecto jb = vecto 0
vecto ic = k vecto ib
tìm k để i j g thẳng hàng
1.Cho tam giác ABC,K là trung điểm của AB. Điểm I thoả mãn \(\overrightarrow{IB}\)= 2\(\overrightarrow{IC}\)
a, Biểu diễn \(\overrightarrow{IK}\) theo 2 véc tơ \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\)
b, J thuộc đoạn thẳng AC sao cho JA= 2JC . Chứng minh I,J,K thẳng hàng
làm họ mik vs
Cho tam giác ABC . Hãy xác định các điểm J K L sao cho : a 2JA + JC - JB = vecto CA b, KA + KB + KC = 2 vectoBC. c, 3LA - LB + 2 LC = vecto 0
a/ \(2\overrightarrow{JA}+\overrightarrow{JC}-\overrightarrow{JB}=\overrightarrow{CJ}+\overrightarrow{JA}\)
\(\Leftrightarrow\overrightarrow{JA}+\overrightarrow{BJ}=2\overrightarrow{CJ}\)
\(\Leftrightarrow\overrightarrow{BA}=2\overrightarrow{CJ}\)
Vậy vẽ điểm I thế này: Vì 2 vecto bằng nhau nên cùng phương=> vẽ CJ//BA sao cho CJ= AB/2
b/ \(\overrightarrow{KA}+\overrightarrow{KB}+\overrightarrow{KC}=2\overrightarrow{BK}+2\overrightarrow{KC}\)
\(\Leftrightarrow\overrightarrow{KA}+\overrightarrow{CK}=3\overrightarrow{BK}\)
\(\Leftrightarrow\overrightarrow{CA}=3\overrightarrow{BK}\)
Vì 2 vecto cùng phương=> Vẽ BK//CA sao cho AC=3BK
Cho tam giác ABC có trọng tâm G Gọi I và J lần lượt là hai điểm thỏa mãn vectơ IB = vectơ BA , vecto JA= -2/3 vecto JC . CM: vecto IJ=2/5 vecto AC - 2 vecto AB
Ta có \(\overrightarrow{IB}=\overrightarrow{BA}\Rightarrow\hept{\begin{cases}I\in AB\\\overrightarrow{AI}=2\overrightarrow{AB}\end{cases}}\). Tương tự \(\hept{\begin{cases}J\in\left[AC\right]\\\overrightarrow{AJ}=\frac{AJ}{AC}\overrightarrow{AC}=\frac{2}{5}\overrightarrow{AC}\end{cases}}\)
Do đó \(\overrightarrow{IJ}=\overrightarrow{AJ}-\overrightarrow{AI}=\frac{2}{5}\overrightarrow{AC}-2\overrightarrow{AB}\)(đpcm).
giải giúp t câu này nha : tính vecto IG theo vecto AB và vecto AC (các b vẽ hình ra hộ t nhé)
cho tam giác ABC có trọng tâm G và N là điểm thỏa mãn vectơ AN = vectơ GC. Hãy xác định vị trí điểm N.
Cho hình bình hành ABCD tâm O. Lấy các điểm I,J thõa mãn :3IA+2IC-2ID=0 và JA-2JB+2JC=0.Chứng minh:I;J;O thẳng hàng
(vecto cả nha)
\(3IA+2\left(IC+DI\right)=0\Leftrightarrow3IA+2DC=0\)
\(\Leftrightarrow3IO+3OA+2DA+2AC=0\Leftrightarrow3IO+3OA-2AD-4OA=0\)
\(\Leftrightarrow3IO-OA-2AD=0\Rightarrow3IO=OA+2AD\) (1)
\(JA-2JB+2JC=0\Leftrightarrow JA+2\left(BJ+JC\right)=0\)
\(\Leftrightarrow JA+2BC=0\Leftrightarrow JO+OA+2BC=0\)
\(\Leftrightarrow JO+OA+2AD=0\Rightarrow OJ=OA+2AD\) (2)
(1); (2) \(\Rightarrow OJ=3IO\) hay I;J;O thẳng hàng
Phân tích dài quá, ko hay lắm :(
αtam giác abc có trọng tâm g.lấy i,j là 2 điểm thỏa:
2 vecto ia+3 vecto ic=vecto không
2 vecto ja+5vecto jb+3 jc+vecto không.c/m:ij qua g
Cho △ABC . Dựng các điểm I, J , K thỏa mãn điều kiện :
a. \(\overrightarrow{IA}-\overrightarrow{3IB}=\overrightarrow{AC}\)
b. \(\overrightarrow{JA}-\overrightarrow{JB}+\overrightarrow{2JC}=\overrightarrow{0}\)
c. \(\overrightarrow{KA}+\overrightarrow{2KB}=\overrightarrow{2CB}\)
a/ \(\Leftrightarrow\overrightarrow{IA}+3\overrightarrow{BI}+\overrightarrow{CA}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{BA}+2\overrightarrow{BI}+\overrightarrow{CA}=\overrightarrow{0}\)
\(\Leftrightarrow2\overrightarrow{BI}=\overrightarrow{AC}+\overrightarrow{AB}\)
nhận thấy \(\overrightarrow{AC}+\overrightarrow{AB}=2\overrightarrow{AK}\) (K là TĐ của BC)
\(\Rightarrow\overrightarrow{BI}=\overrightarrow{AK}\Rightarrow\left\{{}\begin{matrix}\overrightarrow{BI}\uparrow\uparrow\overrightarrow{AK}\\\left|\overrightarrow{BI}\right|=\left|\overrightarrow{AK}\right|\end{matrix}\right.\)
Câu này tôi chọn K ko liên quan j tới câu c hết
b/ \(\Leftrightarrow\overrightarrow{BA}=2\overrightarrow{CJ}\Rightarrow\left\{{}\begin{matrix}\overrightarrow{BA}\uparrow\uparrow2\overrightarrow{CJ}\\BA=2CJ\end{matrix}\right.\)
c/ \(\Leftrightarrow\overrightarrow{KA}+2\overrightarrow{KB}+2\overrightarrow{BC}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{KA}=2\overrightarrow{CK}\Rightarrow...\)