Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thiên Tỉ ca ca
Xem chi tiết
Đàm Đức Mạnh
16 tháng 9 2016 lúc 18:14

4858347

Hoàng Thị Vân Anh
26 tháng 10 2016 lúc 23:10

trong vở bài tập toán lớp 7 tập 1 xoắn 11 bài 115 có  bài tương tự đó bạn

Stugikuni Michikatsu
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 6 2023 lúc 18:41

a: x=2

=>a-5=2a

=>-a=5

=.a=-5

b: x nguyên

=>-5 chia hết cho a

=>a thuộc {1;-1;5;-5}

c: x<0

=>(a-5)/a<0

=>0<a<5

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 3 2018 lúc 14:39

Giả sử x + y = z là một số hữu tỉ.

Suy ra y = z –x ta có z hữu tỉ, x hữu tỉ thì z – x là một số hữu tỉ

Hay y ∈ Q trái giả thiết y là số vô tỉ

Vậy x + y là số vô tỉ

Giả sử z = x.y là một số hữu tỉ

Suy ra y = z : x mà x ∈ Q, z ∈ Q

Suy ra y ∈ Q trái giả thiết y là số vô tỉ

Vậy xy là số vô tỉ

Nguyen Ngoc Thanh Truc
Xem chi tiết
Thuy Bui
20 tháng 11 2021 lúc 21:28

Giả sử x + y = z là một số hữu tỉ.

Suy ra y = z –x ta có z hữu tỉ, x hữu tỉ thì z – x là một số hữu tỉ

Hay y ∈ Q trái giả thiết y là số vô tỉ

Vậy x + y là số vô tỉ

Giả sử z = x.y là một số hữu tỉ

Suy ra y = z : x mà x ∈ Q, z ∈ Q

Suy ra y ∈ Q trái giả thiết y là số vô tỉ

Vậy xy là số vô tỉ

Phạm Quỳnh Anh
Xem chi tiết
Hollow Ichigo
31 tháng 5 2016 lúc 20:13

sai đề hả

Xem chi tiết
Trà Nhật Đông
Xem chi tiết
Nguyễn Thùy Linh
Xem chi tiết
:vvv
Xem chi tiết
Lấp La Lấp Lánh
10 tháng 10 2021 lúc 11:19

Ta có: \(x+y=z\Rightarrow x=z-y\)

\(A=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}=\sqrt{\dfrac{x^2y^2+y^2z^2+x^2z^2}{x^2y^2z^2}}\)

\(=\sqrt{\dfrac{\left(z-y\right)^2y^2+y^2z^2+\left(z-y\right)^2z^2}{x^2y^2z^2}}\)

\(=\sqrt{\dfrac{y^4+y^2z^2-2y^3z+y^2z^2+z^4+y^2z^2-2yz^3}{x^2y^2z^2}}\)

\(=\sqrt{\dfrac{\left(y^4+2y^2z^2+z^4\right)-2yz\left(y^2+z^2\right)+y^2z^2}{x^2y^2z^2}}\)

\(=\sqrt{\dfrac{\left(y^2+z^2\right)^2-2yz\left(y^2+z^2\right)+y^2z^2}{x^2y^2z^2}}\)

\(=\sqrt{\dfrac{\left(y^2+z^2-yz\right)^2}{x^2y^2z^2}}=\left|\dfrac{y^2+z^2-yz}{xyz}\right|\)

Là một số hữu tỉ do x,y,z là số hữu tỉ