Cho góc nhọn \(\alpha\). CMR:
\(\sin\alpha^{ }\)^2011 + cos \(\alpha\)^2012 <1
cho góc nhọn \(\alpha\)cmr: \(\sin^{2011}\alpha+\cos^{2012}\alpha< 1\)
1.Cho các góc\(\alpha,\beta\)nhọn và \(\alpha< \beta\). Chứng minh \(\sin\left(\beta-\alpha\right)=\sin\beta\cos\alpha-\cos\beta\sin\alpha\)
2.Cho các góc \(\alpha,\beta\)nhọn và \(\alpha< \beta\).Chứng minh \(\cos\left(\beta-\alpha\right)=\cos\beta\cos\alpha+\sin\beta\sin\alpha\)
3.Cho các góc \(\alpha,\beta\)nhọn. Chứng minh \(\sin\left(\alpha+\beta\right)=\sin\alpha\cos\beta+\sin\beta\cos\alpha\)
4.Cho các góc \(\alpha,\beta\)nhọn. Chứng minh \(\cos\left(\alpha+\beta\right)=\cos\alpha\cos\beta-\sin\alpha\sin\beta\)
cho \(\alpha\)là một góc nhọn thỏa mãn sin\(\alpha+cos\alpha=\sqrt{2}cmr\)sin\(\alpha=cos\alpha\)
cho các góc α và β nhọn , α < β. Cmr:
a ) cos(β - α)=cosβcosα +sinβsinα
b) sin(β - α)=sinβcosα - sinβsinα
E=\(\sin^6\alpha+\cos^6\alpha+3\sin^2\alpha.\cos^2\alpha\). CMR hệ thức này ko phụ thuộc vào góc nhọn a
Ta có: \(\sin^2\alpha+\cos^2\alpha=1\forall\alpha\)
\(\Rightarrow\left(\sin^2\alpha+\cos^2\alpha\right)^3=1\Rightarrow\sin^6\alpha+\cos^6\alpha+3\sin^2\alpha\cdot\cos^2\alpha\cdot\left(\sin^2\alpha+\cos^2\alpha\right)=1.\)
\(\Rightarrow E=\sin^6\alpha+\cos^6\alpha+3\sin^2\alpha\cdot\cos^2\alpha=1.\)không phụ thuộc vào \(\alpha\)
Cho góc nhọn α
a) Rút gọn biểu thức S=\(\cos^2\alpha+tg^2.\cos^2\alpha\)
b) Chứng minh:
\(\dfrac{\left(\sin\alpha+\cos\alpha\right)^2-\left(\sin\alpha-\cos\alpha\right)^2}{\sin\alpha.\cos\alpha}=4\)
Help me plsssssssssss
\(\dfrac{\left(sina+cosa\right)^2-\left(sina-cosa\right)^2}{sina.cosa}=4\\ VT=\dfrac{sin^2a+2sinacosa+cos^2a-sin^2a+2sinacosa-cos^2a}{sinacosa}\\ =\dfrac{4sinacosa}{sinacosa}=4=VP\)
a: \(S=cos^2a\left(1+tan^2a\right)=cos^2a\cdot\dfrac{1}{cos^2a}=1\)
b: \(VP=\dfrac{1+sin2a-1+sin2a}{\dfrac{1}{2}\cdot sin2a}=\dfrac{2\cdot sin2a}{\dfrac{1}{2}\cdot sin2a}=4=VT\)
a) S= \(cos^2a\left(tg^2a+1\right)=cos^2a.\dfrac{1}{cos^2a}=1\)
Cho hai góc nhọn \(\alpha\)và \(\beta\)sao cho \(\alpha+\beta< 90\)độ .
CMR: \(\sin\left(\alpha+\beta\right)=\sin\alpha\times\cos\beta+\sin\beta\times\cos\alpha\)
CMR: Với mọi góc nhọn \(\alpha\) ta có :
\(a,\sin^2\alpha+\cos^2\alpha=1\)
\(b,\tan\alpha=\frac{\sin\alpha}{\cos\alpha}\)
\(c,\tan^2\alpha+1=\frac{1}{\cos^2\alpha}\)
\(\Delta\)ABC vg tại A , ad tỉ số lg giác trong tg vg ta có
a,\(\sin^2\alpha+\cos^2\alpha\)=\(\frac{AB^2}{BC^2}\)+ \(\frac{AC^2}{BC^2}\)= \(\frac{BC^2}{BC^2}\)=1
b,\(\frac{\sin\alpha}{\cos\alpha}\)= \(\frac{AB}{BC}\): \(\frac{AC}{BC}\)= \(\frac{AB}{AC}\)= \(\tan\alpha\)
#mã mã#
Cho góc nhọn alpha và sin alpha+cos alpha =1 tính giá trị của alpha
Lời giải:
$\sin a+\cos a=1$
$\sin ^2a+\cos ^2a=1$
$\Rightarrow 2\sin a\cos a=(\sin a+\cos a)^2-(\sin ^2a+\cos ^2a)=1^2-1=0$
$\Rightarrow \sin a\cos a=0$
$\Rightarrow \sin a=0$ hoặc $\cos a=0$
Nếu $\sin a=0$ hoặc $\cos a=0$
Mà vì $a$ là góc nhọn nên $\sin a, \cos a< 1$ nên không tìm được góc $a$ thỏa mãn.