\(\left(2x+3y\right)^2+2\left(2x+3y\right)+1\)
HEO ME T^T CẦN GẤP!!!
1) cho hpt: \(\left\{{}\begin{matrix}x-3y=5-2m\\2x+y=3\left(m+1\right)\end{matrix}\right.\)
tìm m để hpt có nghiệm \(\left(x_0,y_0\right)\) t/m: \(x_0^2+y_0^2=9m\)
giúp mk vs mk cần gấp
Làm tính chia
\(\left[7\left(2x-5y\right)\left(2x+5y-2\right)\left(14x^2-3y^2\right)\right]:\left(-3y\right)\)
\(=\left[7\left(4x^2-25y^2-4x+10y\right)\left(14x^2-3y^2\right):\left(-3y\right)\right]\)
\(=\dfrac{7\left(56x^2-362x^2y^2+75y^4-56x^3+12xy^2-140x^2y-30y^3\right)}{-3y}\)
\(=\dfrac{7\left(56x^2-362x^2y^2+75y^4-56x^3+12xy^2-140x^2y-30y^3\right)}{-3y}\)
\(=\dfrac{-392x^2}{3y}+\dfrac{2534}{3}x^2y-175y^3+\dfrac{392}{3}x^3:y-28xy+\dfrac{980}{3}x^2+70y^2\)
tìm x,y biết
\(\left|2x-5\right|+\left|3y+1\right|=0\)
\(\left|3x-4\right|+\left|3y-5\right|=0\)
\(|16-|x||+\left|5y-2\right|=0\)
\(\left|2x-5\right|+\left|xy-3y+2\right|=0\)
a) Ta có: \(\left|2x-5\right|\ge0\forall x\)
\(\left|3y+1\right|\ge0\forall y\)
Do đó: \(\left|2x-5\right|+\left|3y+1\right|\ge0\forall x,y\)
mà \(\left|2x-5\right|+\left|3y+1\right|=0\)
nên \(\left\{{}\begin{matrix}\left|2x-5\right|=0\\\left|3y+1\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-5=0\\3y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=5\\3y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{5}{2}\\y=\frac{-1}{3}\end{matrix}\right.\)
Vậy: \(x=\frac{5}{2}\) và \(y=\frac{-1}{3}\)
b) Ta có: \(\left|3x-4\right|\ge0\forall x\)
\(\left|3y-5\right|\ge0\forall y\)
Do đó: \(\left|3x-4\right|+\left|3y-5\right|\ge0\forall x,y\)
mà \(\left|3x-4\right|+\left|3y-5\right|=0\)
nên \(\left\{{}\begin{matrix}\left|3x-4\right|=0\\\left|3y-5\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-4=0\\3y-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=4\\3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{4}{3}\\y=\frac{5}{3}\end{matrix}\right.\)
Vậy: \(x=\frac{4}{3}\) và \(y=\frac{5}{3}\)
c) Ta có: |16-|x||≥0∀x
\(\left|5y-2\right|\ge0\forall y\)
Do đó: |16-|x||+|5y-2|≥0∀x,y
mà |16-|x||+|5y-2|=0
nên \(\left\{{}\begin{matrix}\text{|16-|x||}=0\\\left|5y-2\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}16-\left|x\right|=0\\5y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left|x\right|=16\\5y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{16;-16\right\}\\y=\frac{2}{5}\end{matrix}\right.\)
Vậy: \(x\in\left\{16;-16\right\}\) và \(y=\frac{2}{5}\)
Cần gấp
\(\left(-\frac{3}{4}x^3y^2\right)+2x^3y^2-\left(-\frac{5}{8}x^3y2\right)là\)
Bài 1 :Tìm x,y ,biết :
a) \(\left(3x-1\right)^2-\left(3x+2\right)\left(3x-2\right)=2014\)
b) \(5x^2+4xy+4y^2+4x+1=0\)
Bài 2 : Chứng minh rằng các biểu thức sau không phụ thuộc vào các biến x,y:
D = \(\left(2x-3y\right)^2-\left(3y-2\right)\left(3y+2\right)-\left(1-2x\right)^2+4x\left(3y-1\right)\)
Bài 1 :
a) \(\left(3x-1\right)^2-\left(3x+2\right)\left(3x-2\right)=2014\)
\(\Leftrightarrow9x^2-6x+1-\left(9x^2-4\right)=2014\)
\(\Leftrightarrow-6x=2009\)
\(\Leftrightarrow x=-\dfrac{2009}{6}=-334\dfrac{5}{6}\)
b) \(5x^2+4xy+4y^2+4x+1=0\)
\(\Leftrightarrow\left(x^2+4xy+4y^2\right)+\left(4x^2+4x+1\right)=0\)
\(\Leftrightarrow\left(x+2y\right)^2+\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+2y=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=\dfrac{1}{4}\end{matrix}\right.\)
Bài 2 :
Ta có :
\(D=\left(4x^2-12xy+9y^2\right)-\left(9y^2-4\right)-\left(1-4x+4x^2\right)+12xy-4x\)
\(=4x^2-12xy+9y^2-9y^2+4-1+4x-4x^2+12xy-4x=3\)
Vậy biểu thức D không phụ thuộc vào các biến x,y
Áp dụng hằng đẳng thức tính
a) \(\left(3x+5\right)^2\)
b) \(\left(2x-1\right)^3\)
c) \(\left(3y+2x\right)\left(2x-3y\right)\)
\(a,\left(3x+5\right)^2=9x^2+30x+25\)
\(b,\left(2x-1\right)^3=8x^3-12x^2+6x-1\)
\(c,\left(3y+2x\right)\left(2x-3y\right)=4x^2-9y^2\)
Tính giá trị biểu thức
D= \(\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)-\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)\) tại x= -1,0008 và y=-1
giúp mk vs
\(D=\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)-\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)\)
\(D=\left[\left(2x\right)^3+\left(3y\right)^3\right]-\left[\left(2x\right)^3-\left(3y\right)^3\right]\)
\(D=\left(2x\right)^3+\left(3y\right)^3-\left(2x\right)^3+\left(3y\right)^3\)
\(D=2.\left(3y\right)^3\)
Thay \(y=-1\) vào biểu thức vừa rút gọn ta có :
\(2.\left(3.-1\right)^3=2.-27=-54\)
Vậy kết quả là \(-54\)
Bài 1: Thực hiện phép tính:
\(x^2y.\left(-3xy^2-3y+2\right)\\ \left(3x-1\right).\left(2x+4\right)\\ 2x^2y.\left(3xy^2+5y-1\right)\\ \left(x-1\right).\left(2x-3\right)\)
a: \(=-3x^3y^3-3x^2y^2+2x^2y\)
b: \(=6x^2+12x-2x-4\)
\(=6x^2+10x-4\)
c: \(=6x^3y^3+10x^2y^2-2x^2y\)
d: \(=2x^2-3x-2x+3\)
\(=2x^2-5x+3\)
tìm x;y
a) \(4x^2+13y+12xy-18y-4x+10\)
b) \(4x^2+12xy+9y^2+4y^2-18y-4x+10\)
c) \(\left(2x+3y\right)^2-2\left(2x+3y\right)+1+4y^2-12y+9\)
d) \(\left(2x+3y-1\right)+\left(2y-3\right)^2=0\)
c: =>(2x+3y-1)^2+(2x-3y)=0
=>2x-3y=0 và 2x+3y=1
=>x=1/4; y=1/6
d: =>2y-3=0 và 2x+3y-1=0
=>y=3/2 và 2x=1-3y=1-9/2=-7/2
=>x=-7/4 và y=3/2