5\(\sqrt{25a^2}\) -25a
Rút gọn biểu thức :
a) 5\(\sqrt{25a^2}-25a\)với a ≤ 0 ;
b) \(\sqrt{16a^4}+6a^2\)
Lời giải:
a)
$5\sqrt{25a^2}-25a=5\sqrt{(5a)^2}-25a=5|5a|-25a$
Với $a\leq 0$ thì $|5a|=-5a$. Do đó:
$5\sqrt{25a^2}-25a=-25a-25a=-50a$
b)
$\sqrt{16a^4}+6a^2=\sqrt{(4a^2)^2}+6a^2=|4a^2|+6a^2=4a^2+6a^2=10a^2$
\(5\sqrt{a}-4b\sqrt{25a^3}+5a\sqrt{16ab^2}-2\sqrt{9a}\)
\(5\sqrt{a}-4b\sqrt{25^3}+5a\sqrt{16ab^2}-2\sqrt{9a}\)
\(=5\sqrt{a}-4b.25a\sqrt{a}+5a.4b\sqrt{a}-6\sqrt{a}\)
\(=5\sqrt{a}-20ab\sqrt{a}+20ab\sqrt{a}-6\sqrt{a}\)
\(=-\sqrt{a}\)
rút gọn biểu thức sau\(5\sqrt{a}-4b\sqrt{25a^{ }3}+5a\sqrt{16ab^2}-2\sqrt{9a}\)
Mình sữa đề 1 chút nha
\(5\sqrt{a}-4b\sqrt{25a^3}+5a\sqrt{16ab^2}-2\sqrt{9a}\)
\(=5\sqrt{a}-20ab\sqrt{a}+20ab\sqrt{a}-6\sqrt{a}\)
\(=-\sqrt{a}\)
rút gọn các biểu thức
a,\(5\sqrt{25a^2}-25a\) với a<0
b,\(\sqrt{49a^2}+3a\) với a > hoạc = 0
c,\(\sqrt{16a^4}+6a^2\) với a bất kì
d, \(x^2-2\sqrt{23}.x+23\)
Rút gọn biểu thức
Giải nhanh giúp mk nha!Thanks <3
1.\(5\sqrt{a}+6\sqrt{a.\frac{1}{4}}-\sqrt{a^2.\frac{4}{a}}+\sqrt{5}=5\sqrt{a}+6.\frac{1}{2}\sqrt{a}-2\sqrt{a}\)+\(\sqrt{5}\)
bạn tự làm nốt các câu này và làm tương tự các câu kia nhé!!Nếu khó chỗ nào hãy nhắn tin cho mk!! hihi
Rút gọn biểu thức
\(5\sqrt{a}-3\sqrt{25a^3}+2\sqrt{36ab^2}-2\sqrt{9a}\)
\(5\sqrt{a}-3\sqrt{25a^3}+2\sqrt{36ab^2}-2\sqrt{9a}\\ =5\sqrt{a}-3\sqrt{25a^2.a}+2\sqrt{36b^2.a}-6\sqrt{a}\\ =-\sqrt{a}-3\left|5a\right|\sqrt{a}+2\left|66\right|\sqrt{a}\\ =-\sqrt{a}-15a\sqrt{a}+12b\sqrt{a}\)
ai làm nhanh giúp em với
\(\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{15}\)
\(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(1-\sqrt{3}\right)^2}\)
\(\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}\)
\(\sqrt{29+12\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)
\(5\sqrt{25a^2}-25a\)
\(\sqrt{16a^4}+6a^2\)
\(\sqrt{\left(4-\sqrt{15}\right)^2}=\left|4-\sqrt{15}\right|=4-\sqrt{15}\)
\(\Rightarrow\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{15}=4-\sqrt{15}+\sqrt{15}=4\)
\(\sqrt{\left(2-\sqrt{3}\right)^2}=\left|2-\sqrt{3}\right|=2-\sqrt{3}\)
\(\sqrt{\left(1-\sqrt{3}\right)^2}=\left|1-\sqrt{3}\right|=\sqrt{3}-1\)
\(\Rightarrow\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(1-\sqrt{3}\right)^2}=2-\sqrt{3}+\sqrt{3}-1=1\)
Rút gọn các biểu thức sau
a) \(\sqrt{25a^2}+3a\) với a ≥ 0
b) \(\sqrt{9a^4}+3a^2\)
c) \(5\sqrt{4a^6}-3a^3\) với a < 0
a) \(=5\left|a\right|+3a=5a+3a=8a\)
b) \(=3\left|a^2\right|+3a^2=3a^2+3a^2=6a^2\)
c) \(=5.2\left|a^3\right|-3a^3=-10a^3-3a^3=-13a^3\)
\(2\sqrt{a}-\dfrac{5}{a}\sqrt{9a^3}+a\sqrt{\dfrac{4}{a}}-\dfrac{2}{a^2}\sqrt{25a^2}\)
a>0
\(2\sqrt{a}-\dfrac{5}{a}\cdot\sqrt{9a^3}+a\sqrt{\dfrac{4}{a}}-\dfrac{2}{a^2}+\sqrt{25a^2}\)
\(=2\sqrt{a}-\dfrac{5}{a}\cdot3a\sqrt{a}+a\cdot\dfrac{2}{\sqrt{a}}-\dfrac{2}{a^2}\cdot5a\)
\(=2\sqrt{a}-5\cdot3\sqrt{a}+\dfrac{2a}{\sqrt{a}}-\dfrac{2}{a}\cdot5\)
\(=2\sqrt{a}-15\sqrt{a}+2\sqrt{a}-\dfrac{10}{a}\)
\(=-11\sqrt{a}-\dfrac{10}{a}\)
\(=\dfrac{-11a\sqrt{a}-10}{a}\)