Tính các góc tam giác ABC
√3.cosA+2.cosB+2√3.cosC=4
Các góc nhọn của tam giác ABC thỏa mãn: \(cosA+cosB+cosC=\sqrt{cosA.cosB}+\sqrt{cosB.cosC}+\sqrt{cosC+cosA}\)CM tam giác ABC đều
Giả thiết của dề bài chưa đúng, mình sửa lại thành \(cosA+cosB+cosC=\sqrt{cosA.cosB}+\sqrt{cosB.cosC}+\sqrt{cosC.cosA}\)
Đặt \(a=\sqrt{cosA},b=\sqrt{cosB},c=\sqrt{cosC}\)
Suy từ giả thiết :
\(2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}a=b=c\\a,b,c>0\end{cases}}\)
Vậy ta có \(\sqrt{cosA}=\sqrt{cosB}=\sqrt{cosC}\Rightarrow\hept{\begin{cases}cosA=cosB=cosC\\\widehat{A}+\widehat{B}+\widehat{C}=180^o\end{cases}}\)
\(\Rightarrow\widehat{A}=\widehat{B}=\widehat{C}=60^o\)
\(\Rightarrow\Delta ABC\) là tam giác đều.
cho tam giác ABC, chứng minh cosA/2.cosB/2. cosC/2<=3 căn 3/8
cho tam giác ABC nhọn. Chứng mnh rằng cosA+cosB+cosC=3/2 khi và chỉ khi tam giác ABC đều
Ta chứng minh chiều nghịch:
Khi tam giác ABC đều, góc A=gócB=gócC=60*
Khi đó cosA+cosB+cosC=3/2(đpcm)
Ta chứng minh chiều thuận
Ta chứng minh cosA+cosB+cosC≤3/2
Thật vậy:
Mà theo gt, cosA+cosB+cosC=3/2
nên ta có tam giác ABC đều(đpcm)
vẽ AD,BE, CF là các đường cao của tam giác ABC
\(\cos A=\sqrt{\cos BAE\cdot\cos CAF}=\sqrt{\frac{AE}{AB}\cdot\frac{AE}{AC}}=\sqrt{\frac{AF}{AB}\cdot\frac{AE}{AC}}\le\frac{1}{2}\left(\frac{AF}{AB}+\frac{AE}{AC}\right)\)
ta có \(\cos A\le\frac{1}{2}\left(\frac{AF}{AB}+\frac{AE}{AC}\right)\left(1\right)\)
tương tự \(\cos B\le\frac{1}{2}\left(\frac{BF}{AB}+\frac{BD}{BC}\right)\left(2\right);\cos C\le\frac{1}{2}\left(\frac{CD}{BC}+\frac{CE}{AC}\right)\left(3\right)\)
do đó \(\cos A+\cos B+\cos C\le\frac{1}{2}\left(\frac{AF}{AB}+\frac{AE}{AC}+\frac{BF}{AB}+\frac{BD}{BC}+\frac{CD}{BC}+\frac{CE}{AC}\right)\)
\(\Rightarrow\cos A+\cos B+\cos C\le\frac{1}{2}\left(\frac{AF}{AB}+\frac{BF}{AB}+\frac{AE}{AC}+\frac{CE}{AC}+\frac{BD}{BC}+\frac{CD}{BC}\right)\)
\(\Rightarrow\cos A+\cos B+\cos C\le\frac{3}{2}\)
dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{AF}{AB}=\frac{AE}{AC}\\\frac{BF}{AB}=\frac{BD}{BC}\\\frac{CD}{BC}=\frac{CE}{AC}\end{cases}}\Leftrightarrow AB=AC=BC\)
do vậy cosA+cosB+cosC=3/2 <=> AB=AC=BC <=> tam giác ABC đều
Cách khác khỏi phải dùng hình học :v
\(A=\cos A+\cos B+\cos C\)
\(=\left(\cos A+\cos B\right)\cdot1+\sin A\cdot\sin B-\cos A\cdot\cos B\)
\(\le\frac{1}{2}\left[\left(\cos A+\cos B\right)^2+1\right]+\frac{1}{2}\left(\sin^2A+\sin^2B\right)-\cos A\cdot\cos B\)
\(=\frac{1}{2}\left(\cos^2A+\sin^2A+\cos^2B+\sin^2B\right)+\frac{1}{2}\)
\(=\frac{3}{2}\)
ez Problem :v
cho tam giác abc có 3 góc nhọn. Vẽ đường cáo AD, BE, CF cắt nhau tại H. Chứng minh:
a) \(0< cos^2A+cos^2B+cos^2C< 1\)
b)\(2< sin^2A+sin^2B+sin^2C< 3\)
c)sinA + sinB + sinC < 2( cosA + cosB + cosC)
d)sinB . cosC + sinC . cosB = sinA
e)tanA + tanB + tanC = tanA . tanB . tanC
Cho tam giác ABC nhọn. Chứng minh rằng cosA + cosB + cosC = AB^2 + AC^2 + BC^2/4.S.ABC
Xét tam giác ABC nhọn có \(BC^2=AB^2+AC^2-2AB\cdot AC\cdot\cos\widehat{A}\)
\(\Rightarrow\cos\widehat{A}=\dfrac{AB^2+AC^2-BC^2}{2AB\cdot AC}=\dfrac{AB^2+AC^2-BC^2}{4\cdot\dfrac{1}{2}AB\cdot AC}=\dfrac{AB^2+AC^2-BC^2}{4S_{ABC}}\)
Cmtt: \(\left\{{}\begin{matrix}\cos\widehat{B}=\dfrac{AB^2+BC^2-AC^2}{4S_{ABC}}\\\cos\widehat{C}=\dfrac{AC^2+BC^2-AB^2}{4S_{ABC}}\end{matrix}\right.\)
\(\Rightarrow\cos\widehat{A}+\cos\widehat{B}+\cos\widehat{C}\\
=\dfrac{AB^2+AC^2-BC^2+AB^2+BC^2-AC^2+AC^2+BC^2-AB^2}{4S_{ABC}}\\
=\dfrac{AB^2+AC^2+BC62}{4S_{ABC}}\)
Cho tam giác ABC không tù thỏa mãn : \(cos2A+2\sqrt{2}\left(cosB+cosC\right)=3\)
Tính các góc của tam giác ABC
Ta có : \(cos2A+2\sqrt{2}\left(cosB+cosC\right)=3\)
\(\Leftrightarrow1-2sin^2A+2\sqrt{2}.2.cos\left(\dfrac{B+C}{2}\right).cos\left(\dfrac{B-C}{2}\right)=3\)
\(\Leftrightarrow2sin^2A-4\sqrt{2}.sin\dfrac{A}{2}.cos\left(\dfrac{B-C}{2}\right)+2=0\)
\(\Leftrightarrow sin^2A-2\sqrt{2}.sin\dfrac{A}{2}.cos\left(\dfrac{B-C}{2}\right)+1=0\)
\(\Delta\) ABC không tù nên \(cos\dfrac{A}{2}\ge cos45^o=\dfrac{\sqrt{2}}{2}\)
Suy ra : VT \(\ge sin^2A-4.cos\dfrac{A}{2}.sin\dfrac{A}{2}.cos\left(\dfrac{B-C}{2}\right)+1=K\)
Thấy : \(K=sin^2A-2.sinA.cos\left(\dfrac{B-C}{2}\right)+cos\left(\dfrac{B-C}{2}\right)^2+1-cos\left(\dfrac{B-C}{2}\right)^2\)
\(=\left(sinA-cos\left(\dfrac{B-C}{2}\right)\right)^2+sin^2\left(\dfrac{B-C}{2}\right)\ge0\)
Suy ra : \(VT\ge K\ge0=VP\)
Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}sinA=cos\left(\dfrac{B-C}{2}\right)\\sin\left(\dfrac{B-C}{2}\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}sinA=cos0^o=1\\B=C\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}A=\dfrac{\pi}{2}\\B=C=\dfrac{\pi}{4}\end{matrix}\right.\) ( do \(A+B+C=\pi\) )
Vậy ...
Cho tam giác ABC có góc A tù. Cho các biểu thức sau:
(1) M = sin A + sin B + sin C
(2) N = cosA. cosB. cosC
(3) P = cos A 2 . sin B 2 . c o t C 2
(4) Q = cotA.tan B.tan C
Số các biểu thức mang giá trị dương là:
A. 1
B. 2
C. 3
D. 4
Chọn B.
Ta có: góc A tù nên cos A < 0 ; sinA > 0 ; tan A < 0 ; cot A < 0
Do góc A tù nên góc B và C là các góc nhọn có các giá trị lượng giác đều dương
Do đó: M > 0 ; N > 0 ; P > 0 và Q < 0.
Cho Cho tam giác abc có 3 góc nhọn . Chứng minh CosA . CosB . CosC ≤\(\frac{1}{8}\)
cho tam giác abc nhọn. chứng minh rằng:
sinA+sinB+sinC<2(cosA+cosB+cosC)
Cho tam giác ABC .tìm GTLN của P=cosA/2.căn(cosB/2.cosC/2)