Hình bên cho biết: góc BAC + góc ACD = 1800
Chứng minh: d vuông góc với CD
Cho hình thang ABCD (AD//BC, AD>BC) có đường chéo AC vuông góc với cạnh bên CD, góc BAC = góc CAD và góc D=60 độ a,CM ABCD Là hình thang cân b,Tính độ dài cạnh đáy AD biết chu vi hình thang =20cm
1, Cho hình thang ABCD ( AB // CD ) có góc B - góc C = 24° , góc A = 1,5 góc D . Tính các góc của hình thang .
2. Cho hình thang vuông ABCD ( góc A = góc D = 90°) đường chéo BD vuông góc với cạnh bên BC và BD = BC :
a, Tính các góc của hình thang .
b, Biết AB = 3 cm , Tính độ dài các cạnh BC,CD .
Bài 1 : Cho hình vẽ sau, biết góc BAD + ADC = 180 độ ; góc BAD = 120 độ ; ACD = 40 độ ; AB vuông góc với BC
.a. CM AB // CD
b. CM : BC vuông góc CD
c. Tính góc BAC và góc ADC
BAD + ADC = 1800
mà 2 góc này ở vị trí trong cùng phía
=> AB // CD
mà AB _I_ BC
=> CD _I_ BC
AB // CD
=> BAC = ACD (2 góc so le trong)
mà ACD = 400
=> BAC = 400
BAD + ADC = 1800
1200 + ADC = 1800
ADC = 1800 - 1200
ADC = 600
Cho hình thang ABCD , có AD là đáy lớn , đường chéo AC vuông góc với cạnh bên CD , góc BAC = góc CAD . Biết chu vi của hình thang là 20 cm và góc D = 60 . Độ dài AD là ....
B1:Tính góc CAD = 30' ; => CD=1/2 AD(nửa tam giác đều);Chứng minh ABCD là hình thang cân
B2:Tính tất cả các góc của tam giác ABC =>ABC cân tại B =>AB=BC<=>AB=BC=CD=1/2 AD
B3:Lập 1 bài toán: cho AB=BC=CD=1/2 AD = x ;Tính ra AD = 8cm
AD là 8cm nha bạn
Chúc bạn học giỏi.
Cách giải mình sẽ up sau;
Lười đánh máy :v
Cho hình thang ABCD , có AD là đáy lớn , đường chéo AC vuông góc với cạnh bên CD , góc BAC = góc CAD . Biết chu vi của hình thang là 20 cm và góc D = 60 . Độ dài AD là ....
a: góc AEB=(sd cung BC+sđ cung DM)/2
=1/2(sđ cung BC+sđ cung CM)
=1/2*sđ cung BM
=góc ABM
=góc ABE
=>ΔABE cân tại A
mà AH là phân giác
nen AH vuông góc với BE
b: Xét ΔMDE và ΔMBD có
góc MDE=góc MBD
góc DME chung
=>ΔMDE đồng dạng với ΔMBD
=>MD/MB=ME/MD
=>MD^2=MB*ME
Cho hình vẽ bên, biết B A C ^ = 123°, A B D ^ = 57° và d ⊥ a. Hỏi d có vuông góc với b không ?
cho hình thanh ABCD ( AD//BC , AD>BC) đường chéo AC vuông góc với cạnh bên CD góc BAC = góc CAD và góc D bằng 60 độ
a. chứng minh ABCD là hình thang cân
b. nếu chu vi của hình thnag đó là 20cm tính độ dài AD
Cho hình thang ABCD có góc A =góc D = 90°,CD = 2AD = 2AB, cho AC = 25.
a) Tính góc ACD.
b) Tính AB, AD,CD.
c) Vẽ DH vuông góc AC. Tính DH và chứng minh góc ABH = góc ACB.
a) Xét tam giác \(ADC\)vuông tại \(D\):
\(tan\widehat{ACD}=\frac{AD}{DC}=\frac{1}{2}\Rightarrow\widehat{ACD}=arctan\frac{1}{2}\)
b) Xét tam giác \(ADC\)vuông tại \(D\):
\(AC^2=AD^2+DC^2=AD^2+4AD^2=5AD^2\)
\(\Leftrightarrow AD=\sqrt{\frac{AC^2}{5}}=\sqrt{\frac{25^2}{5}}=5\sqrt{5}\left(cm\right)\)
\(AB=AD=5\sqrt{5}\left(cm\right),CD=2AD=10\sqrt{5}\left(cm\right)\).
c) Xét tam giác \(ADC\)vuông tại \(D\):
\(DH=\frac{AD.DC}{AC}=\frac{10\sqrt{5}.5\sqrt{5}}{25}=10\left(cm\right)\)
\(AH=\frac{AD^2}{AC}=\frac{AB^2}{AC}\Leftrightarrow\frac{AB}{AC}=\frac{AH}{AB}\)
Xét tam giác \(ABH\)và tam giác \(ACB\):
\(\widehat{A}\)chung
\(\frac{AB}{AC}=\frac{AH}{AB}\)
suy ra \(\Delta ABH~\Delta ACB\left(c.g.c\right)\)
\(\Rightarrow\widehat{ABH}=\widehat{ACB}\)
Cho hình thang cân ABCD (AB//CD, AB>CD) có CD=a, góc A cộng góc B=1/2 (góc C cộng góc D). Đường chéo AC vuông góc với cạnh bên BC.
a) Tính các góc của hình thang
b) Chứng minh AC là phân giác của góc DAB.