Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Thị Thùy Ly
Xem chi tiết
123ab4567h89
5 tháng 10 2017 lúc 15:50

BÀI 1 cho tam giác ABC vuông tại A.Kẻ BD là phân giác của góc B.Kẻ AI vuông góc BD tại I.AI cắt BC tại E

a) chứng minh AB=EB

b) chứng minh tam giác BED vuông

c) DE cắt AB tại F, chứng minh AE//FC

BÀI 2 cho tam giác ABC cân tại A, có BD và CE là hai đường trung tuyến cắt nhau tại I

a) chứng minh tam giác IBC cân

b)lấy O thuộc tia IC sao cho IO=IE.Gọi K là trung điểm của IA.Chứng minh AO, BD, CK đồng quy

BÀI 3 cho tam giác ABC cân tại A, kẻ tia phân giác của góc BAC cắt BC tại H.Biết AB=15cm, BC=18cm

a)so sánh góc A và góc C

b)chứng minh rằng tam giác ABH = tam giác ACH

c)vẽ trung tuyến BD của tam giác ABC cắt AH tại G.Chứng minh rằng: tam giác AEG = tam giác ADG

d)tính độ dài AG

e) kẻ đường thẳng CG cắt AB ở E, chứng minh rằng: tam giác AEG = tam giác ADG

BÀI 4 cho tam giác ABC vuông tại A, trên BC lấy điểm D sao cho BA=BD.Qua D kẻ đường vuông góc với BC cắt AC tại E, qua C kẻ đường vuông góc với BE tại H cắt AB tại F

a)chứng minh tam giác ABE = tam giác DBE

b) chứng minh tam giác BCF cân

c) chứng minh 3 điểm F.D,E thẳng hàng

d)trên cạnh CB lấy điểm M sao cho CA=CM.Tính số đo góc DAM

BÀI 5 cho tam giác ABC cân tại A, kẻ BD vuông góc AC, kẻ CE vuông góc AB, BD và CE cắt nhau tại I

a)chứng minh rằng tam giác BDC = tam giác CEB

b)so sánh góc IBE và góc ICD

c) đường thẳng AI cắt BC tại H, chứng minh AI vuông góc BC tại H

BÀI 6 cho tam giác ABC vuông tại A, biết AB=6cm, AC=8cm

a)tính BC

b)trung trực của BC cắt AC tại D và cắt AB tại F, chứng minh góc DBC=DCB

c) trên tia đối của tia DB lấy E sao cho DE=DC, chứng minh tam giác BCE vuông và DF là phân giác góc ADE

d) chứng minh BE vuông góc FC

IS
22 tháng 2 2020 lúc 20:02

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
 => BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE. 
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
 =>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
 (Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của  ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE      => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực  Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/

(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
 => ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM          => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của  ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).

Khách vãng lai đã xóa
Van Nguyenthi
Xem chi tiết
Trang
24 tháng 6 2020 lúc 15:47

hình như thiếu đề bài nha bạn

Khách vãng lai đã xóa
Phạm Mèo Mun
Xem chi tiết
Phan Cẩm Ly
8 tháng 4 2019 lúc 22:35

Bạn có cần gấp không Nếu chưa cần thì mai mình gửi cho

Nguyễn Trần Phương Vy
8 tháng 4 2019 lúc 22:35

7/3+11/3^2+15/3^3........2019/3^304

Đỗ Thị Dung
8 tháng 4 2019 lúc 22:50

a, xét 2 t.giác vuông BEI và BAI có:

              IB cạnh chung

             \(\widehat{EBI}\)=\(\widehat{ABI}\)(gt)

=> t.giác BEI=t.giác BAI(Cạnh góc vuông-góc nhọn)

=>BE=BA

b,xét t.giác ABD và t.giác EBD có:

             AB=EB(theo câu a)

            \(\widehat{ABD}\)=\(\widehat{EBD}\)(gt)

            BD chung

=>t.giác ABD=t.giác EBD(c.g.c)

=>\(\widehat{DAB}\)=\(\widehat{DEB}\)mà \(\widehat{DAB}\)=90 độ nên suy ra \(\widehat{DEB}\)=90 độ

=> t.giác BED vuông tại E

c, 

sao bala
Xem chi tiết
Nguyễn Hải Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 1 2022 lúc 23:00

a: Xét ΔBAE có 

BI là đường cao

BI là đường phân giác

Do đó: ΔABE cân tại B

nên BA=BE

b: Xét ΔBAD và ΔBED có 

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED
Suy ra: \(\widehat{BAD}=\widehat{BED}=90^0\)

hay ΔBED vuông tại E

c: Xét ΔADF vuông tại A và ΔEDC vuông tại E có 

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

Do đó: ΔADF=ΔEDC

Suy ra: AF=EC

Xét ΔBFC có 

BA/AF=BE/EC

Do đó: AE//FC

Duong
Xem chi tiết
Nguyễn thị thúy Quỳnh
16 tháng 12 2023 lúc 20:09

a) Ta có:

- Góc ABD là góc giữa hai phân giác của góc ABC, nên ABD = CBD.

- Góc EBD là góc giữa phân giác của góc ABC và đường thẳng DE, nên EBD = CBD.

Vậy tam giác ABD = tam giác EBD.

 

b) Ta có:

- Góc ABD = góc EBD (do chứng minh ở câu a).

- Góc ADB = góc EDB (do cùng là góc vuông).

- Vậy tam giác ABD = tam giác EBD (do hai góc bằng nhau và góc giữa hai cạnh bằng nhau).

- Do đó, BD vuông góc với AE.

- Ta có AE cắt BD tại I, vậy I là trung điểm của AE.

 

c) Ta có:

- Tia Cx vuông góc với tia BD tại H.

- Trên tia đối của tia AB, lấy điểm F sao cho AF = EC.

- Ta cần chứng minh 3 điểm C, H, F thẳng hàng và AE // FC.

- Vì AF = EC và tam giác ABD = tam giác EBD (do chứng minh ở câu a), nên tam giác AFB = tam giác EFC (do hai cạnh bằng nhau và góc giữa hai cạnh bằng nhau).

- Vậy 3 điểm C, H, F thẳng hàng và AE // FC.

Nguyễn Lê Phước Thịnh
16 tháng 12 2023 lúc 20:10

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED
b: Ta có: ΔBAD=ΔBED

=>BA=BE và DA=DE

Ta có: BA=BE

=>B nằm trên đường trung trực của AE(1)

Ta có: DA=DE

=>D nằm trên đường trung trực của AE(2)

Từ (1) và (2) suy ra BD là đường trung trực của AE
=>BD vuông góc với AE tại trung điểm I của AE

c: Xét ΔBFC có \(\dfrac{BA}{AF}=\dfrac{BE}{EC}\)

nên AE//CF

Ta có: BD\(\perp\)AE

AE//CF

Do đó: BD\(\perp\)CF

mà BD\(\perp\)CH

và CH,CF có điểm chung là C

nên C,H,F thẳng hàng

Nguyễn thị thúy Quỳnh
16 tháng 12 2023 lúc 20:12

loading...

MINH LÊ ĐÌNH
Xem chi tiết
Lê Loan
1 tháng 5 2022 lúc 15:57

lag a ban 

Trần Tuấn Hoàng
1 tháng 5 2022 lúc 16:52

c) -△ABG và △JBG có: \(AB=BE;\widehat{ABG}=\widehat{JBG};BG\) là cạnh chung.

\(\Rightarrow\)△ABG=△JBG (c-g-c).

\(\Rightarrow\widehat{AGB}=\widehat{JGB}\) nên GB là tia phân giác góc AGE.

AE//CF \(\Rightarrow\widehat{BAE}=\widehat{AFG}\).

-△BFC cân tại B mà BG là đường cao nên BG cũng là trung tuyến.

\(\Rightarrow\)G là trung điểm CF.

-△ACF vuông tại A có: AG là trung tuyến.

\(\Rightarrow AG=FG=\dfrac{1}{2}BC\Rightarrow\)△AFG cân tại G.

\(\Rightarrow\widehat{AFG}=\widehat{FAG}\) mà \(\widehat{BAE}=\widehat{AFG}\Rightarrow\widehat{BAE}=\widehat{FAG}\).

\(\widehat{EAC}=90^0-\widehat{BAE}=90^0-\widehat{FAG}=\widehat{GAC}\).

\(\Rightarrow\)AC là tia phân giác góc EAG.

-△AEG có: 2 đg phân giác AC và GB cắt nhau tại D.

\(\Rightarrow\)D là điểm cách đều 3 cạnh của △AEG (hay còn gọi là giao của 3 đg phân giác, tâm đường tròn nội tiếp tam giác).

Trần Tuấn Hoàng
1 tháng 5 2022 lúc 16:57

d) -Cho mình xin sử dụng t/c của lớp 8, mình sẽ c/m sau (đường trung bình của tam giác).

\(BM+BN=BC\) mà \(BM+MF=BF=BC\Rightarrow MF=BN\).

-Gọi H là trung điểm BC. Qua M kẻ đường thẳng song song với IH cắt BC tại J.

-△NMJ có: IH//MJ, I là trung điểm MN.

\(\Rightarrow\)H là trung điểm NJ nên \(NH=HJ\).

\(CJ=CH-HJ=BH-NH=BN\)

\(\Rightarrow CJ=MF\Rightarrow BM=BJ\Rightarrow\)△MBJ cân tại B.

\(\Rightarrow\widehat{BMJ}=\dfrac{180^0-\widehat{MBJ}}{2}\) mà \(\widehat{BAE}=\dfrac{180^0-\widehat{MBJ}}{2}\) 

\(\Rightarrow\widehat{BMJ}=\widehat{BAE}\Rightarrow\)MJ//AE.

-Ta dễ dàng thấy rằng điểm A,D,E cố định \(\Rightarrow\)AE, MJ cố định.

\(\Rightarrow\)Trung điểm I của MN luôn nằm trên 1 đg thẳng cố định (đg thẳng MJ).

 

Vu Quang Huy
Xem chi tiết
Vu Quang Huy
18 tháng 10 2018 lúc 20:34

giúp mình gấp với, còn c, d, e thôiiii

le thi hau
Xem chi tiết