Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Thị Minh Phương
Xem chi tiết
Akai Haruma
14 tháng 8 2017 lúc 17:58

Lời giải:

Biến đổi: \(q(x)=9.81^x+15.25^x+2.8^x+8.64^x\)

Lại có:

\(\left\{\begin{matrix} 81\equiv 13\pmod {17}\rightarrow 81^k\equiv 13^k\pmod {17}\\ 25\equiv 8\pmod {17}\rightarrow 25^k\equiv 8^k\pmod {17}\\ 64\equiv 13\pmod {17}\rightarrow 64^k\equiv 13^k\pmod {17}\end{matrix}\right.\)

Do đó, \(q(x)\equiv 9.13^k+15.8^k+2.8^k+8.13^k\pmod {17}\)

\(\Leftrightarrow q(x)\equiv 17.13^k+17.8^k\equiv 0\pmod {17}\)

\(\Leftrightarrow q(x)\vdots 17\) (đpcm)

Nguyễn Thảo Nhi
Xem chi tiết
Nguyễn Hoàng Minh
2 tháng 12 2021 lúc 18:58

\(a,\Rightarrow12x-91=101\\ \Rightarrow12x=192\\ \Rightarrow x=16\\ b,\Rightarrow x:23+45=133\\ \Rightarrow x:23=88\\ \Rightarrow x=\dfrac{88}{23}\\ c,\Rightarrow\left(6x-39\right):7=3\\ \Rightarrow6x-39=21\\ \Rightarrow6x=60\\ \Rightarrow x=10\\ d,\Rightarrow3x-24=\dfrac{148}{73}\\ \Rightarrow3x=\dfrac{1900}{73}\\ \Rightarrow x=\dfrac{1900}{219}\\ e,\Rightarrow\left[{}\begin{matrix}x=0\\x=10\end{matrix}\right.\\ f,\Rightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\\ d,\left(9-x\right)^3=64=4^3\\ \Rightarrow9-x=4\\ \Rightarrow x=5\\ h,\Rightarrow x=27\\ i,\Rightarrow6x=312\cdot12=624\cdot6\\ \Rightarrow x=624\\ j,\Rightarrow\left(19x+104\right):14=25-42=-17\\ \Rightarrow19x+104=-238\\ \Rightarrow19x=-342\\ \Rightarrow x=-18\)

Megpoid gumi gumiya
Xem chi tiết
Học tập là số 1
29 tháng 8 2017 lúc 21:58

hẽhe kĩckDễ z sao đăg hả bn

alibaba nguyễn
30 tháng 8 2017 lúc 9:27

\(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}\)

\(=\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}\ge3+2=5\)

Minh Hằng Hoàng
Xem chi tiết
Dũng Nguyễn
19 tháng 8 2018 lúc 15:34

1. a,\(A=x^2-2x+5=x^2-2.x.1+1^2-1+5\)

\(=\left(x-1\right)^2+4\)

Do \(\left(x-1\right)^2\ge0\) với \(\forall x\) \((\)dấu "=" xảy ra \(\Leftrightarrow x=1)\)

\(\Rightarrow\left(x-1\right)^2+4\ge4\) hay \(A\ge4\) \((\) dấu "=" xảy ra \(\Leftrightarrow x=1)\)

Vậy Min A=4 tại x=1

b,\(B=2x^2-6x=2\left(x^2-3x\right)\)

\(=2.\left(x^2-2.x.\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{9}{4}\right)\)

\(=2.\left[\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\right]\)

\(=2.\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\)

Do \(2.\left(x-\dfrac{3}{2}\right)^2\ge0\) với mọi x (dấu "=" xảy ra <=> x=\(\dfrac{3}{2}\))

\(\Rightarrow2.\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\) hay \(B\ge-\dfrac{9}{2}\)

(dấu "=" xảy ra <=> x=\(\dfrac{3}{2}\))

Vậy Min B = \(-\dfrac{9}{2}\) tại x=\(\dfrac{3}{2}\)

Bài 2

a,\(A=6x-x^2+3=-\left(x^2-6x-3\right)\)

\(=-\left(x^2-2.x.3+3^2-9-3\right)\)

\(=-\left[\left(x-3\right)^2-12\right]\)

\(=-\left(x-3\right)^2+12\)

Do \(-\left(x-3\right)^2\le0\) với mọi x (dấu "=" xảy ra <=> x=3)

\(\Rightarrow-\left(x-3\right)^2+12\le12\) hay \(A\le12\) (dấu "=" xảy ra <=> x=3)

Vậy Max A =12 tại x=3

b,\(B=x-x^2+2=-\left(x^2-x-2\right)\)

\(=-\left[x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}-2\right]\)

\(=-\left[\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{4}\right]\)

\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\)

Do \(-\left(x-\dfrac{1}{2}\right)^2\le0\) với mọi x (dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\))

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\) hay \(B\le\dfrac{9}{4}\) (dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\))

Vậy Max B=\(\dfrac{9}{4}\) tại x=\(\dfrac{1}{2}\)

c,\(C=5x-x^2-5=-\left(x^2-5x+5\right)\)

\(=-\left[x^2-2.x.\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2-\dfrac{25}{4}+5\right]\)

\(=-\left[\left(x-\dfrac{5}{2}\right)^2-\dfrac{5}{4}\right]\)

\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{5}{4}\)

Do \(-\left(x-\dfrac{5}{2}\right)^2\le0\) với mọi x (dấu "=" xảy ra <=> x=\(\dfrac{5}{2}\))

\(\Rightarrow-\left(x-\dfrac{5}{2}\right)^2+\dfrac{5}{4}\le\dfrac{5}{4}\) hay \(C\le\dfrac{5}{4}\) (dấu ''='' xảy ra <=> x=\(\dfrac{5}{2}\))

Vậy Max C=\(\dfrac{5}{4}\) tại x=\(\dfrac{5}{2}\)

Yukru
19 tháng 8 2018 lúc 20:24

Mình làm tiếp phần của Dũng Nguyễn nha.

b) \(4x-x^2-5\)

\(=-\left(x^2-4x+5\right)\)

\(=-\left(x^2-2.x.2+4+1\right)\)

\(=-\left(x-2\right)^2-1\)

\(-\left(x-2\right)^2\le0\) với mọi x

\(\Rightarrow-\left(x-2\right)^2-1\le-1\)

\(\Rightarrow-\left(x-2\right)^2-1< 0\) với mọi x

Vậy \(4x-x^2-5< 0\) với mọi x

c) \(x^2-x+1\)

\(=x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(\left(x-\dfrac{1}{2}\right)^2\ge0\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) với mọi x

Vậy \(x^2-x+1>0\) với mọi x

d) \(-x^2+2x-4\)

\(=-\left(x^2-2x+4\right)\)

\(=-\left(x^2-2x+1+3\right)\)

\(=-\left(x-1\right)^2-3\)

\(-\left(x-1\right)^2\le0\) với mọi x

\(\Rightarrow-\left(x-1\right)^2-3\le-3\)

\(\Rightarrow-\left(x-1\right)^2-3< 0\)

Vậy \(-x^2+2x-4< 0\) với mọi x

Dũng Nguyễn
19 tháng 8 2018 lúc 15:47

a,\(x^2-6x+10=x^2-2.x.3+3^2-9+10\)

\(=\left(x-3\right)^2+1\)

Do \(\left(x-3\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x-3\right)^2+1\ge1>0\)(đpcm)

Yukru làm mấy câu còn lại hộ tớ!

Vo Trong Duy
Xem chi tiết
nam do duy
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 9 2023 lúc 19:59

1B

2D

Nguyễn Đức Long
Xem chi tiết
Dương Hoài Giang
13 tháng 12 2021 lúc 23:00

\(\text{A.}\)\(\text{x3+6x2+3x−10}\)

Khách vãng lai đã xóa
Tai Ho
Xem chi tiết
Nguyễn Cao Mỹ Thanh
20 tháng 8 2016 lúc 20:14

c) +) giả sử k chẵn--> k2 chẵn --> k2-k+1 lẻ
+) giả sử k lẻ --> k2 lẻ --> k2-k+1 lẻ
==> ko tồn tại k thuộc Z thỏa đề
d) sai
vì ví dụ x=-4<3 nhưng x2=(-4)2=16>9(ko thỏa đề)


 

Quốc An
Xem chi tiết
Võ Đông Anh Tuấn
15 tháng 8 2016 lúc 10:09

\(x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)-10+3x\)

\(=x.5x-x.3-x^2.x+x^2.1+x.x^2-x.6x-10+3x\)

\(=5x^2-3x-x^3+x^2+x^3-6x^2+10+3x\)

\(=-10\)

Biểu thức trên kết quả là -10 => ĐPCM

Nguyễn Phương HÀ
15 tháng 8 2016 lúc 10:11

\(x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)-10+3x\)

=\(5x^2-3x-x^3+x^2+x^3-6x^2-10+3x\)

=\(\left(x^3-x^3\right)+\left(5x^2+x^2-6x^2\right)+\left(-3x+3x\right)-10\)

=-10

=> ĐPCM

Hoàng Lê Bảo Ngọc
15 tháng 8 2016 lúc 10:35

\(x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)-10+3x\)

\(=5x^2-3x-x^3+x^2+x^3-6x^2-10+3x=-10\)