cmr q(x)=\(10^{6x+2}+10^{3x+1}+1⋮91\forall x\in N\), x lẻ
cmr \(q\left(x\right)=3^{4x+2}+3.5^{2x+1}+2^{3x+1}+2.4^{3x+1}⋮17\forall x\in N\)
Lời giải:
Biến đổi: \(q(x)=9.81^x+15.25^x+2.8^x+8.64^x\)
Lại có:
\(\left\{\begin{matrix} 81\equiv 13\pmod {17}\rightarrow 81^k\equiv 13^k\pmod {17}\\ 25\equiv 8\pmod {17}\rightarrow 25^k\equiv 8^k\pmod {17}\\ 64\equiv 13\pmod {17}\rightarrow 64^k\equiv 13^k\pmod {17}\end{matrix}\right.\)
Do đó, \(q(x)\equiv 9.13^k+15.8^k+2.8^k+8.13^k\pmod {17}\)
\(\Leftrightarrow q(x)\equiv 17.13^k+17.8^k\equiv 0\pmod {17}\)
\(\Leftrightarrow q(x)\vdots 17\) (đpcm)
Bài 5.Tìm x N, sao cho:
a)3636 : (12x –91) = 36
b)(x : 23 + 45) . 67 = 8911
c)[(6x –39) : 7]. 4 = 12
d)(3x –24). 73= 2. 74
e)x(x –10) = 0
f)(x+ 1). (x –2) = 0
g)(9 –x)3= 64
h)3x= 81
i)2 . 3x= 10 . 312+ 8 . 312
j)(19x + 2.52) : 14 = (13 -8)2-42
\(a,\Rightarrow12x-91=101\\ \Rightarrow12x=192\\ \Rightarrow x=16\\ b,\Rightarrow x:23+45=133\\ \Rightarrow x:23=88\\ \Rightarrow x=\dfrac{88}{23}\\ c,\Rightarrow\left(6x-39\right):7=3\\ \Rightarrow6x-39=21\\ \Rightarrow6x=60\\ \Rightarrow x=10\\ d,\Rightarrow3x-24=\dfrac{148}{73}\\ \Rightarrow3x=\dfrac{1900}{73}\\ \Rightarrow x=\dfrac{1900}{219}\\ e,\Rightarrow\left[{}\begin{matrix}x=0\\x=10\end{matrix}\right.\\ f,\Rightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\\ d,\left(9-x\right)^3=64=4^3\\ \Rightarrow9-x=4\\ \Rightarrow x=5\\ h,\Rightarrow x=27\\ i,\Rightarrow6x=312\cdot12=624\cdot6\\ \Rightarrow x=624\\ j,\Rightarrow\left(19x+104\right):14=25-42=-17\\ \Rightarrow19x+104=-238\\ \Rightarrow19x=-342\\ \Rightarrow x=-18\)
CMR: \(\forall x\in R\)có: \(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}\ge5\)
\(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}\)
\(=\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}\ge3+2=5\)
1.tìm GTNN
A=\(x^2-2x+5\)
B=\(2x^2-6x\)
C=\(x^2+y^2-x+6y+10\)
2.tìm GTLN
A=\(6x-x^2+3\)
B=\(x-x^2+2\)
C=\(5x-x^2-5\)
3.chứng tỏ rằng
a,\(x^2-6x+10>0\forall x\)
b,\(4x-x^2-5< 0\forall x\)
c,\(x^2-x+1>0\forall x\)
d,\(-x^2+2x-4< 0\forall x\)
Giúp mink với.Mình đg cần rất chi là gấp vì chiều mai mink phải nộp rồi
1. a,\(A=x^2-2x+5=x^2-2.x.1+1^2-1+5\)
\(=\left(x-1\right)^2+4\)
Do \(\left(x-1\right)^2\ge0\) với \(\forall x\) \((\)dấu "=" xảy ra \(\Leftrightarrow x=1)\)
\(\Rightarrow\left(x-1\right)^2+4\ge4\) hay \(A\ge4\) \((\) dấu "=" xảy ra \(\Leftrightarrow x=1)\)
Vậy Min A=4 tại x=1
b,\(B=2x^2-6x=2\left(x^2-3x\right)\)
\(=2.\left(x^2-2.x.\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{9}{4}\right)\)
\(=2.\left[\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\right]\)
\(=2.\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\)
Do \(2.\left(x-\dfrac{3}{2}\right)^2\ge0\) với mọi x (dấu "=" xảy ra <=> x=\(\dfrac{3}{2}\))
\(\Rightarrow2.\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\) hay \(B\ge-\dfrac{9}{2}\)
(dấu "=" xảy ra <=> x=\(\dfrac{3}{2}\))
Vậy Min B = \(-\dfrac{9}{2}\) tại x=\(\dfrac{3}{2}\)
Bài 2
a,\(A=6x-x^2+3=-\left(x^2-6x-3\right)\)
\(=-\left(x^2-2.x.3+3^2-9-3\right)\)
\(=-\left[\left(x-3\right)^2-12\right]\)
\(=-\left(x-3\right)^2+12\)
Do \(-\left(x-3\right)^2\le0\) với mọi x (dấu "=" xảy ra <=> x=3)
\(\Rightarrow-\left(x-3\right)^2+12\le12\) hay \(A\le12\) (dấu "=" xảy ra <=> x=3)
Vậy Max A =12 tại x=3
b,\(B=x-x^2+2=-\left(x^2-x-2\right)\)
\(=-\left[x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}-2\right]\)
\(=-\left[\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{4}\right]\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\)
Do \(-\left(x-\dfrac{1}{2}\right)^2\le0\) với mọi x (dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\))
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\) hay \(B\le\dfrac{9}{4}\) (dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\))
Vậy Max B=\(\dfrac{9}{4}\) tại x=\(\dfrac{1}{2}\)
c,\(C=5x-x^2-5=-\left(x^2-5x+5\right)\)
\(=-\left[x^2-2.x.\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2-\dfrac{25}{4}+5\right]\)
\(=-\left[\left(x-\dfrac{5}{2}\right)^2-\dfrac{5}{4}\right]\)
\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{5}{4}\)
Do \(-\left(x-\dfrac{5}{2}\right)^2\le0\) với mọi x (dấu "=" xảy ra <=> x=\(\dfrac{5}{2}\))
\(\Rightarrow-\left(x-\dfrac{5}{2}\right)^2+\dfrac{5}{4}\le\dfrac{5}{4}\) hay \(C\le\dfrac{5}{4}\) (dấu ''='' xảy ra <=> x=\(\dfrac{5}{2}\))
Vậy Max C=\(\dfrac{5}{4}\) tại x=\(\dfrac{5}{2}\)
Mình làm tiếp phần của Dũng Nguyễn nha.
b) \(4x-x^2-5\)
\(=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-2.x.2+4+1\right)\)
\(=-\left(x-2\right)^2-1\)
Vì \(-\left(x-2\right)^2\le0\) với mọi x
\(\Rightarrow-\left(x-2\right)^2-1\le-1\)
\(\Rightarrow-\left(x-2\right)^2-1< 0\) với mọi x
Vậy \(4x-x^2-5< 0\) với mọi x
c) \(x^2-x+1\)
\(=x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\ge0\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) với mọi x
Vậy \(x^2-x+1>0\) với mọi x
d) \(-x^2+2x-4\)
\(=-\left(x^2-2x+4\right)\)
\(=-\left(x^2-2x+1+3\right)\)
\(=-\left(x-1\right)^2-3\)
Vì \(-\left(x-1\right)^2\le0\) với mọi x
\(\Rightarrow-\left(x-1\right)^2-3\le-3\)
\(\Rightarrow-\left(x-1\right)^2-3< 0\)
Vậy \(-x^2+2x-4< 0\) với mọi x
a,\(x^2-6x+10=x^2-2.x.3+3^2-9+10\)
\(=\left(x-3\right)^2+1\)
Do \(\left(x-3\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x-3\right)^2+1\ge1>0\)(đpcm)
Yukru làm mấy câu còn lại hộ tớ!
Bài 1: Cho \(x_n=-\frac{2655}{2}.\left(-1\right)^n+\frac{1349}{10}.5^n-1995\)
CMR: \(x_{2016}⋮2017\)
Bài 2: Cm: \(2^{n-1}\left(x^n+y^n\right)\ge\left(x+y\right)^n,\forall n\in N^{\cdot}\)
Câu 1:Trong các mện đề sau , mệnh đề nào đúng
\(A.\exists n\in N,n\left(n+1\right)\left(n+2\right)\)là số lẻ \(B.\forall x\in R,x^2< \Leftrightarrow-2< x< 2\)
\(C.\exists n\in N,n^2+1\)chia hết cho 3 \(D.\forall x\in R,x^2\ge\pm3\)
Câu 2 : Trong các mệnh đề sau,mệnh đề nào là mệnh đề sai ?
\(A.\exists x\in R,x^2-3x+2=0\) \(B.\forall x\in R,x^2\ge0\)
\(C.\exists n\in N,n^2=n\)
\(D.\forall n\in N\) thì n< 2n
Tìm mẫu thức chung của hai phân thức\(\frac{x+1}{x^2+2x-3}\)và\(\frac{-2x}{x^2+7x+10}\)là:
A.\(x^3+6x^2+3x+10\)
B.\(x^3-6x^2+3x-10\)
C.\(x^3+6x^2-3x-10\)
D.\(x^3+6x^2+3x+10\)
Giải hộ mình vs
\(\text{A.}\)\(\text{x3+6x2+3x−10}\)
Các mệnh đề sau đúng hay sai ? Hãy giải thích điều đó
c) "$\exists k\in Z;(k^{2}-k cộng 1) là số chẵn $"
d)"$\forall x\in Z;\frac{2x³-6x² cộng x-3}{2x² cộng 1}\in Z$"
e)"$\exists x\in Z;\frac{x²-2x cộng 3}{x-1}\in Z$"
d)"$\forall x\in R;x<3\Rightarrow x²<9$"
e)"$\forall n\in N;(n²-n)chia hết cho 3$"
g)"$\forall x\in R;\frac{x²}{2x²+1}<\frac{1}{2}$"
f)"$\forall n\in N;(n²-n) chia hết cho 24$"
c) +) giả sử k chẵn--> k2 chẵn --> k2-k+1 lẻ
+) giả sử k lẻ --> k2 lẻ --> k2-k+1 lẻ
==> ko tồn tại k thuộc Z thỏa đề
d) sai
vì ví dụ x=-4<3 nhưng x2=(-4)2=16>9(ko thỏa đề)
CMR biểu thức sau k phụ thuộc vào biến x :
a ) \(x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)-10+3x\)
\(x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)-10+3x\)
\(=x.5x-x.3-x^2.x+x^2.1+x.x^2-x.6x-10+3x\)
\(=5x^2-3x-x^3+x^2+x^3-6x^2+10+3x\)
\(=-10\)
Biểu thức trên kết quả là -10 => ĐPCM
\(x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)-10+3x\)
=\(5x^2-3x-x^3+x^2+x^3-6x^2-10+3x\)
=\(\left(x^3-x^3\right)+\left(5x^2+x^2-6x^2\right)+\left(-3x+3x\right)-10\)
=-10
=> ĐPCM
\(x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)-10+3x\)
\(=5x^2-3x-x^3+x^2+x^3-6x^2-10+3x=-10\)