Lời giải:
Biến đổi: \(q(x)=9.81^x+15.25^x+2.8^x+8.64^x\)
Lại có:
\(\left\{\begin{matrix} 81\equiv 13\pmod {17}\rightarrow 81^k\equiv 13^k\pmod {17}\\ 25\equiv 8\pmod {17}\rightarrow 25^k\equiv 8^k\pmod {17}\\ 64\equiv 13\pmod {17}\rightarrow 64^k\equiv 13^k\pmod {17}\end{matrix}\right.\)
Do đó, \(q(x)\equiv 9.13^k+15.8^k+2.8^k+8.13^k\pmod {17}\)
\(\Leftrightarrow q(x)\equiv 17.13^k+17.8^k\equiv 0\pmod {17}\)
\(\Leftrightarrow q(x)\vdots 17\) (đpcm)