x^3+y^3+z^3=3xyzTÍNH M= (1+x/y)(1+y/z)(1+z/x)
Tìm x, y, z
\(\dfrac{x+y+2}{z}=\dfrac{y+z+1}{x}=\dfrac{z+x-3}{y}=\dfrac{1}{x+y+z}\)
Áp dụng tích chất của dãy tỉ số bằng nhau, ta có
\(\dfrac{x+y+2}{z}=\dfrac{y+z+1}{x}=\dfrac{z+x-3}{y}\\ =\dfrac{x+y+2+y+z+1+z+x-3}{z+x+y}=\dfrac{2\left(x+y+z\right)+\left(1+2-3\right)}{z+x+y}=2\\ Vì\dfrac{x+y+2}{z}=\dfrac{y+z+1}{x}=\dfrac{z+x-3}{y}=\dfrac{1}{x+y+z}\\ =>2=\dfrac{1}{x+y+z}=>2\left(x+y+z\right)=1=>x+y+z=\dfrac{1}{2}\\ =>\dfrac{x+y+2}{z}=2=>x+y+2=2z\\ \dfrac{y+z+1}{x}=2=>y+z+1=2x\\ \dfrac{z+x-3}{y}=2=>z+x-3=2y\\ \dfrac{1}{x+y+z}=2=>x+y+z=\dfrac{1}{2}\)
+) x+y+z = \(\dfrac{1}{2}=>y+z=\dfrac{1}{2}-x=>\dfrac{1}{2}-x+1=2x=>3x=\dfrac{3}{2}=>x=\dfrac{1}{2}\)
+)\(x+y+z=\dfrac{1}{2}=>x+y=\dfrac{1}{2}-z=>\dfrac{1}{2}-z+2=2z=>3z=\dfrac{5}{2}=>z=\dfrac{5}{6}\)
\(=>x+y+z=\dfrac{1}{2}+\dfrac{5}{6}+y=\dfrac{1}{2}=>\dfrac{4}{3}+y=\dfrac{1}{2}=>y=\dfrac{-5}{6}\)
Vậy \(x=\dfrac{1}{2}\\ y=\dfrac{-5}{6}\\ z=\dfrac{5}{6}\)
Ê mấy bọn 7B Nguyễn Lương Bằng ơi bài 2 Toán chiều làm thế này đúng chưa! Góp ý nha!
Tìm x,y,z biết:
a) x/15=y/20=z/28 và 2x+2y-z=186
b)x/3=y/4 ; y/5=2x-z=-3y+372
c)3x=2y ; 7y=5z và x+y+z=98
d)3x=2y=4z và x+y+z=104
e)1/2.x=2/3.y=3/4.z và x-y=15
g) x-1/2=y-2/3=z-3/4 và 2x+3y-2=50
h) y+2+1/x=x+z+2/y=x+y-3/z=1/x+y+z
i)x/y+z+1=y/x+z+1=z/x+y-2=x+y+z
k)x/2=y/3=z/5 và x.y.z=810
m) x/y=2/3 ; x/z=4/9 và x^3+y^3+z^3=1009
giúp vs mình đg gấp ạ, tks
cho xyz=1 và x+y+z=1/x+1/y+1/z=0. tính giá trị M=x^6+y^6+z^6/x^3+y^3+z^3
Tìm x, y, z biết:
x+1/3 = y+2/2 = z+3/1 và x-y+z=22
Tìm x, y, z biết:
x+1/3 = y+2/2 = z+3/1 và x-y+z=22
a) Ta có:
\(\dfrac{x+1}{3}=\dfrac{y+2}{2}=\dfrac{z+3}{1}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được
\(\dfrac{x+1}{3}=\dfrac{y+2}{2}=\dfrac{z+3}{1}\)
\(=\dfrac{x+1-y-2+z+3}{3-2+1}\)
\(=\dfrac{22+2}{2}\)
\(=\dfrac{24}{2}=12\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x+1}{3}=12\\\dfrac{y+2}{2}=12\\\dfrac{z+3}{1}=12\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+1=36\\y+2=24\\z+3=12\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=36-1=35\\y=24-2=22\\z=12-3=9\end{matrix}\right.\)
Cho x, y, z là các số thực thoả mãn: \(\left\{{}\begin{matrix}x+y+z=1\\x^2+y^2+z^2=1\\x^3+y^3+z^3=1\end{matrix}\right.\)
Tính: \(M=x^{10}+y^{100}+z^{1000}\)
Lời giải:
Ta có:
$(x+y+z)^3=x^3+y^3+z^3+3(x+y)(y+z)(x+z)$
$\Leftrightarrow 1^3=1+3(x+y)(y+z)(x+z)$
$\Leftrightarrow (x+y)(y+z)(x+z)=0$
$\Rightarrow x+y=0$ hoặc $y+z=0$ hoặc $x+z=0$
Không mất tổng quát giả sử $x+y=0$
Kết hợp với $x+y+z=1\Rightarrow z=1$
$\Rightarrow x^2+y^2=0$. Kết hợp với $x+y=0$ suy ra $x=y=0$
Do đó: $M=0^{10}+0^{100}+1^{1000}=1$
TH $y+z=0$ và $z+x=0$ ta cũng thu được điều tương tự
Vậy $M=1$
Đề bài: ax,y,z >0 và \(\sqrt{x}+\sqrt{y}+\sqrt{z}=1\). Tìm Min P= \(\dfrac{x^3}{y+z}+\dfrac{y^3}{z+x}+\dfrac{z^3}{x+y}\).
ĐÁP ÁN:
Ta có: \(\dfrac{x^3}{y+z}+\dfrac{y+z}{36}+\dfrac{1}{162}+\dfrac{y^3}{x+z}+\dfrac{x+z}{36}+\dfrac{1}{162}+\dfrac{z^3}{x+y}+\dfrac{x+y}{36}+\dfrac{1}{162}\ge3\sqrt[3]{\dfrac{x^3}{y+z}.\dfrac{y+z}{36}.\dfrac{1}{162}}+3\sqrt[3]{\dfrac{y^3}{x+z}.\dfrac{x+z}{36}.\dfrac{1}{162}}+3\sqrt[3]{\dfrac{z^3}{x+y}.\dfrac{x+y}{36}.\dfrac{1}{162}}=3\sqrt[3]{\dfrac{x^3}{36.162}}+3\sqrt[3]{\dfrac{y^3}{36.162}}+3\sqrt[3]{\dfrac{z^3}{36.162}}=\dfrac{x+y+z}{6}.\)
=> P+\(\dfrac{x+y+z}{18}+\dfrac{1}{54}\)≥\(\dfrac{x+y+z}{6}\) <=> P≥\(\dfrac{x+y+z}{6}-\dfrac{x+y+z}{18}-\dfrac{1}{54}\)=\(\dfrac{x+y+z}{9}-\dfrac{1}{54}\)
Ta c/m đc: 3(x+y+z)≥(\(\sqrt{x}+\sqrt{y}+\sqrt{z}\))2 <=> 2(x+y+z) ≥2\(\left(\sqrt{xy}+\sqrt{xz}+\sqrt{yz}\right)\)<=> x+y+z≥\(\sqrt{xy}+\sqrt{xz}+\sqrt{yz}\)(luôn đúng)
➩x+y+z ≥ \(\dfrac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^3}{3}=\dfrac{1}{3}\) => P≥\(\dfrac{1}{54}\). Dấu ''='' xảy ra <=> x=y=z=\(\dfrac{1}{9}\)
Cho x, Y, z khác 0 thỏa mãn (x-y-z) ^2=x^2+y^2+z^2 Cm 1/x^3 -1/y^3 -1/z^3=3/xyz
Cho x, y, z thỏa mãn \(\dfrac{1}{3^x}+\dfrac{1}{3^y}+\dfrac{1}{3^z}=1\). Chứng minh rằng:
\(\dfrac{9^x}{3^x+3^{y+z}}+\dfrac{9^y}{3^y+3^{z+x}}+\dfrac{9^z}{3^z+3^{x+y}}\ge\dfrac{3^x+3^y+3^z}{4}\)
\(\left(3^x;3^y;3^z\right)=\left(a;b;c\right)\Rightarrow\left\{{}\begin{matrix}a;b;c>0\\ab+bc+ca=abc\end{matrix}\right.\)
BĐT cần chứng minh trở thành:
\(\dfrac{a^2}{a+bc}+\dfrac{b^2}{b+ca}+\dfrac{c^2}{c+ab}\ge\dfrac{a+b+c}{4}\)
Thật vậy, ta có:
\(VT=\dfrac{a^3}{a^2+abc}+\dfrac{b^3}{b^2+abc}+\dfrac{c^3}{c^2+abc}\)
\(VT=\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{b^3}{\left(a+b\right)\left(b+c\right)}+\dfrac{c^3}{\left(a+c\right)\left(b+c\right)}\)
Áp dụng AM-GM:
\(\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{a+b}{8}+\dfrac{a+c}{8}\ge\dfrac{3a}{4}\)
Làm tương tự với 2 số hạng còn lại, cộng vế với vế rồi rút gọn, ta sẽ có đpcm