1+2+22+23+...+263=264-1
Bài 1. Tính S1 = 1 + 2 + 22 + 23 + … + 263
\(S_1=1+2+2^2+2^3+..+2^{63}\\ \Rightarrow2S_1=2+2^2+2^3+2^4+...+2^{64}\\ \Rightarrow S_1-2S_1=1-2^{64}\\ \Rightarrow-S_1=1-2^{64}\\ \Rightarrow S_1=2^{64}-1.\)
- Ta có: S1 = 1 + 2 + 22 + 23 + … + 263 = 1 + 2(1 + 2 + 22 + 23 + … + 262) (1)
= 1 + 2(S1 - 263) = 1 + 2S1 - 264 S1 = 264 - 1
H2.right
`#3107.101107`
`S_1 = 1 + 2 + 2^2 + 2^3 + ... + 2^63`
`2S_1 = 2 + 2^2 + 2^3 + .... + 2^64`
`2S_1 - S_1 = (2 + 2^2 + 2^3 + ... + 2^64) - (1 + 2 + 2^2 + 2^3 + ... + 2^63)`
`S_1 = 2 + 2^2 + 2^3 + ... + 2^64 - 1 - 2 - 2^2 - 2^3 - ... - 2^63`
`S_1 = 2^64 - 1`
Vậy, `S_1 = 2^64 - 1.`
Tính tổng
A = 1 + 2 + 22 + 23 +.....+ 262 + 263
A=1+2+22+23+...+262+263
2A=2+22+23+24+...+263+264
2A-A=2+22+23+24+...+263+264-1+2+22+23+...+262+263
A=264-1
\(A=1+2+2^2+2^3+..+2^{62}+2^{63}\)
\(2A=2+2^2+2^3+...+2^{63}+2^{64}\)
\(2A-A=2^{64}-1\)
\(A=2^{64}-1\)
A=1+2+22+23+...+262+263
2A=2(1+2+22+23+...+262+263)
2A=2+23+24+25...+263+264
2A-A=(2+23+24+25...+263+264)-(1+2+22+23+...+262+263)
A=264-1
Nha bạn. Chúc bn ht
Tính tổng
A = 1 + 2 + 22 + 23 + ... + 262 + 263
2A = 2 + 22 + 23 + 24 + ... + 263 + 264
A = 264 - 1
1. Rút gọn các biểu thức sau:
A = 1002- 992 + 982 - 972 + ... + 22 - 12
B = 3(22+ 1) (24 + 1) ... (264 + 1) + 1
C = (a + b + c)2+ (a + b - c)2 - 2(a + b)2
a. A = 1002 - 992+ 982 - 972 + ... + 22 - 12
b. B = 3(22 + 1) (24 + 1) ... (264 + 1) + 12
c. C = (a + b + c)2 + (a + b - c)2 - 2(a + b)2
Rút gọn ạ
a: A=(100-99)(100+99)+(98-97)(98+97)+...+(2-1)(2+1)
=100+99+98+...+2+1
=5050
b: \(B=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\cdot...\cdot\left(2^{64}+1\right)+1\)
\(=\left(2^4-1\right)\left(2^4+1\right)\cdot...\cdot\left(2^{64}+1\right)+1\)
\(=\left(2^8-1\right)\left(2^8+1\right)\cdot...\cdot\left(2^{64}+1\right)\)+1
\(=2^{64}-1+1=2^{64}\)
1. Rút gọn các biểu thức sau:
a. A = 1002 - 992+ 982 - 972 + ... + 22 - 12
b. B = 3(22 + 1) (24 + 1) ... (264 + 1) + 12
c. C = (a + b + c)2 + (a + b - c)2 - 2(a + b)2
a: \(A=\left(100-99\right)\left(100+99\right)+\left(98+97\right)\left(98-97\right)+....+\left(2+1\right)\left(2-1\right)\)
\(=100+99+98+97+...+2+1\)
=5050
b: \(B=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\cdot...\cdot\left(2^{64}+1\right)+1\)
\(=\left(2^4-1\right)\left(2^4+1\right)\cdot...\cdot\left(2^{64}+1\right)+1\)
\(=\left(2^8-1\right)\left(2^8+1\right)\cdot...\cdot\left(2^{64}+1\right)+1\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)+1\)
\(=\left(2^{32}-1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)+1\)
\(=\left(2^{64}-1\right)\cdot\left(2^{64}+1\right)+1\)
\(=2^{128}-1+1=2^{128}\)
a. \(A=100^2-99^2+98^2-97^2+...+2^2-1^2\)
\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)
\(=199+195+...+3\)
\(=\dfrac{\left(199+3\right)\left(\dfrac{199-3}{4}+1\right)}{2}=5050\)
b. \(B=3\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1^2\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1^2\)
\(=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1^2\)
\(=2^{128}-1+1=2^{128}\)
c) \(C=\left(a+b+c\right)^2+\left(a+b-c\right)^2-2\left(a+b\right)^2\)
\(=a^2+b^2+c^2+2ab+2ac+2bc+a^2+b^2+c^2+2ab-2ac-2bc-2a^2-2b^2-4ab\)
\(=2c^2\)
bài 5 : rút gọn các biểu thức sau:
A=1002-992+982-972+....+22-12
B=3(22+1)(24+1)(28+1)....(264+1)+1
C=(a+b+c)2+(a+b-c)2-2(a+b)2
Rút gọn các biểu thức sau:
a. A = 1002 - 992+ 982 - 972 + ... + 22 - 12
b. B = 3(22 + 1) (24 + 1) ... (264 + 1) + 12
c. C = (a + b + c)2 + (a + b - c)2 - 2(a + b)2
\(A=\left(100-99\right)\left(100+99\right)+\left(99-98\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\\ A=100+99+99+98+...+2+1\\ A=\left(100+1\right)\left(100-1+1\right):2=5050\)
\(B=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\\ B=\left(2^1-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)...\left(2^{64}+1\right)+1\\ B=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)...\left(2^{64}+1\right)+1\\ B=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)...\left(2^{64}+1\right)+1\\ B=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)+1\\ B=\left(2^{32}-1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)+1\\ B=\left(2^{64}-1\right)\left(2^{64}+1\right)+1=2^{128}-1+1=2^{128}\)
\(C=a^2+b^2+c^2+2ab+2bc+2ac+a^2+b^2+c^2+2ab-2ac-2bc-2a^2-4ab-2b^2\\ C=2c^2\)
B=-2/11+-1/6=52/264+3/22+5/24+-7/8