Giup mih cau 101 vs
Mấy ban CTV ơi giup mih cau 30 vs 31 vs
câu 30 y'=0 ta có 3 nghiệm x=0 và x=+-căn(m) vs x=+-căn(m)=>y=-m2 =>A(-căn(m);-m^2).B(căn(m);-m^2)=> kc AB=2 căn(m) tại x=0 y=0 =>O(0;0) vì hàm có 3 cực trị =>tam giác 0AB cân => m^2 là đường cao Soab=(2 căn(m)*m^2)/2 =căn(m)^3<1 gọi căn m là x => x^3-1<0 áp dụng hằng đt => x-1<0 => x<1 =>m<1
giup mih cau 30 31 vs
Lời giải:
Bài 30:
Ta có \(y=x^4-2mx^2\Rightarrow y'=4x^3-4mx\)
Để ĐTHS có 3 điểm cực trị thì \(y'=4x^3-4mx=0\) phải có ba nghiệm phân biệt
\(\Leftrightarrow x(x^2-m)=0\) có ba nghiệm phân biệt. Do đó \(m>0\)
Khi đó, gọi ba điểm cực trị lần lượt là:
\(A(0,0);B(\sqrt{m},-m^2);C(-\sqrt{m},-m^2)\)
Từ đây, ta viết được PTĐT $BC$ là: \(y=-m^2\)
Sử dụng công thức tính khoảng cách từ 1 điểm đến đường thẳng:
\(d(A,BC)=\frac{|m^2|}{\sqrt{1^2+0^2}}=m^2\)
\(BC=\sqrt{(\sqrt{m}--\sqrt{m})^2+(-m^2+m^2)^2}=2\sqrt{m}\)
\(\Rightarrow S_{ABC}=\frac{d(A,BC).BC}{2}=m^2\sqrt{m}<1\). Mà \(m>0\) nên
\(m^2\sqrt{m}<1\Leftrightarrow 0<\sqrt{m^5}<1\Leftrightarrow 0< m<1\).
Đáp án D.
Bài 31:
Đề bài sai rồi nhé, hàm thứ hai phải là \(y=x^3-3x^2-m+2\)
PT hoành độ giao điểm:
\(x^3-3x^2-m+2+mx=0\)
\(\Leftrightarrow (x-1)[x^2-2x+(m-2)]=0\)
PT trên có một nghiệm là $1$. Để hai đths cắt nhau tại ba điểm phân biệt thì PT \(x^2-2x+(m-2)=0(1)\) phải có hai nghiệm pb khác $1$
\(\Rightarrow \left\{\begin{matrix} 1-2-2+m\neq 0\\ \Delta'=3-m>0\end{matrix}\right.\Rightarrow m<3\)
Nếu $x_1,x_2$ là hai nghiệm của $(1)$ thì áp dụng định lý Viete ta có:
\(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2=m-2\end{matrix}\right.\)
Như vậy, độ dài các đoạn $AB,BC,AC$ nằm trong các giá trị:
\(\left\{\begin{matrix} |x_1-1|\sqrt{m^2+1}\\ |x_2-1|\sqrt{m^2+1}\\ |x_1-x_2|\sqrt{m^2+1}\end{matrix}\right.\)
Ta thấy \(x_1+x_2=2\Rightarrow x_1-1=1-x_2\Rightarrow |x_1-1|=|x_2-1|\)
Do đó \(|x_1-1|\sqrt{m^2+1}=|x_2-1|\sqrt{m^2+1}\), tức là luôn tồn tại hai đoạn thẳng nối hai giao điểm có độ dài bằng nhau (thỏa mãn đkđb) , với mọi $m$ nằm trong khoảng xác định, hay \(m<3\)
Đáp án D.
Giup mih cau 21 thanhkstha
Giup mih vs
cho tam giac ABC vuong tai A, AB< AC. D thuoc AC; M, N,E la trung diem cua BD, BC,CD.
a) C/m: DMNE là hbh.
b) C/m: AENM là htc.
c) Xác định D để BMNE là hình thoi
ai giai giup mih cau C vs. huhu...
a: Xét ΔCDB có
E là trung điểm của CD
N là trung điểm của CB
Do đó: EN là đường trung bình
=>EN//DM và EN=DM
hay DMNE là hình bình hành
b: Xét ΔBDC có
M là trung điểm của BD
N là trung điểm của BC
Do đó: MN là đường trung bình
=>MN//CD
hay MN//AE
Xét ΔDBC có
M là trung điểm của BD
E là trung điểm của CD
Do đó: ME là đường trung bình
=>ME=BC/2(1)
Ta có: ΔABC vuông tại A
mà AN là đường trung tuyến
nên AN=BC/2(2)
Từ (1) và (2) suy ra AN=ME
Xét tứ giác AMNE có MN//AE
nên AMNE là hình thang
mà AN=ME
nên AMNE là hình thang cân
Số 2 mũ 100 có số chữ số là.....giup mih vs
2^100 = (2^10)^10 = 1024^10 > 1000^10 = 10^30.
2^100 = 2*(2^33)^3 < 2* (10^10)^3 (vì 2^33 < 10^10) = 2* 10^30.
→ 10^10 < 2^100 < 2*10^30
Vậy 2^100 có 31 chữ số.
giup mih voi...bai 2 :cau e.f....Bai 3:cau c.d.k.l....Dang3:Bai 1.2.3.8
g
Dạng II:
Bài 2:
e) Ta có: \(\frac{x+4}{7+y}=\frac{4}{7}\)
\(\Rightarrow\frac{x+4}{4}=\frac{7+y}{7}\)
\(\Rightarrow\frac{x}{4}+1=1+\frac{y}{7}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{7}\) và x + y = 22
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{4}=\frac{y}{7}=\frac{x+y}{4+7}=\frac{22}{11}=2\)
\(\frac{x}{4}=2\Rightarrow x=2.4=8\)
\(\frac{y}{7}=2\Rightarrow y=2.7=14\)
Vậy x = 8 và y = 14
f) Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{2}=\frac{y-x}{7-5}=\frac{48}{2}=24\)
\(\frac{x}{5}=24\Rightarrow x=24.5=120\)
\(\frac{y}{7}=24\Rightarrow y=24.7=168\)
\(\frac{z}{2}=24\Rightarrow z=24.2=48\)
Vậy x = 120, y = 168 và z = 48
Bài 3:
c) x2 - 3x = 0
\(\Rightarrow\) x2 = 3x
\(\Rightarrow\) x = 3
d) \(\frac{64}{2^x}=32\)
\(\Rightarrow\) 2x = 64 : 32
\(\Rightarrow\) 2x = 2
\(\Rightarrow\) x = 1
P/S: Mấy câu còn lại tối về mình làm nhé, mình đi hok thêm đã.
Bài 3:
k) Ta có: 2x = 3y = 5z
=> 2x/30 = 3y/30 = 5z/30
=> x/15 = y/10 = z/6 và x + 2y - z = 29
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
x/15 = y/10 = z/6 = 2y/20 = x + 2y - z / 15 + 20 - 6 = 29/29 = 1
x/15 = 1 => x = 15 . 1 = 15
y/10 = 1 => y = 10 . 1 = 10
z/6 = 1 => z = 6 . 1 = 6
Vậy x = 15; y = 10 và z = 6
l) Ta có: x/y = 3/4
=> x/3 = y/4
=> x/9 = y/12 (1)
y/z = 3/8
=> y/3 = z/8
=> y/12 = z/32 (2)
Từ (1) và (2) => x/9 = y/12 = z/32 và 3x - 2y - z = -29
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
x/9 = y/12 = z/32 = 3x/27 = 2y/24 = 3x - 2y - z / 27 - 24 - 32 = -29/-29 = 1
x/9 = 1 => x = 9 . 1 = 9
y/12 = 1 => y = 12 . 1 = 12
z/32 = 1 => z = 32 . 1 = 32
Vậy x = 9; y = 12 và z = 32
P/S: Dấu "/" là phân số nhé bạn!
Dạng III:
Bài 2:
Gọi số gạo chứa trong 3 bao lần lượt là a, b, c (kg) (a, b, c > 0)
+ Vì số gạo chứa trong 3 bao tỉ lệ với 5, 6, 9 nên:
a/5 = b/6 = c/9
+ Vì số gạo trong bao thứ hai nhiều hơn ở bao thứ nhất là 12 kg nên:
b - a = 12
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
a/5 = b/6 = c/9 = b - a / 6 - 5 = 12/1 = 12
a/5 = 12 => a = 12 . 5 = 60 (kg)
b/6 = 12 => b = 12 . 6 = 72 (kg)
c/9 = 12 => c = 12 . 9 = 108 (kg)
Vậy số gạo chứa trong 3 bao lần lượt là 60 kg; 72 kg và 108 kg
Bài 8:
Vì x và y tỉ lệ nghịch với 3 và 5 nên 3x = 5y
=> 3x/30 = 5y/30
=> x/10 = y/6
Đặt x/10 = y/6 = k
=> x = 10k; y = 6k
Ta thay vào: x . y = 1500
=> 10k . 6k = 1500
=> 60 . k^2 = 1500
=> k^2 = 1500 : 60 = 25
=> k = 5 hoặc k = -5
*Nếu k = 5 thì x = 10 . 5 = 50; y = 6 . 5 = 30
*Nếu k = -5 thì x = 10 . (-5) = -50; y = 6 . (-5) = -30
Vậy (x; y) = {(50; 30); (-50; -30)}
de nguyen la ho nha chim.neu them dau sac nuoc lien chay qua.them huyen nghe tieng ngan nga.them vao dau hoi ke ra nguoi vao.CAC BAN GIUP MINH GIAI CAU DO NAY NHE.MAY DT CUA MIH KO CO DAU MONG MOI NGUOI GIUP DO
Gíup mih cau 103 vs
Lời giải:
Ta có:
\(y=-x^3+3x^2+5\Rightarrow y'=-3x^2+6x=0\Leftrightarrow \)\(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Do đó hai điểm cực trị là:\(A(0,5)\) và \(B(2,9)\)
Suy ra \(\left\{\begin{matrix} OA=5\\ OB=\sqrt{85}\\ AB=2\sqrt{5}\end{matrix}\right.\)
Sử dụng công thức Herong: Với \(a,b,c\) là độ dài ba cạnh tam giác, \(p\) là nửa chu vi thì:
\(S=\sqrt{p(p-a)(p-b)(p-c)}\)
Áp dụng vào bài toán:
\(S_{OAB}=5\)
Đáp án B