Giải phương trình : \(\left(\sqrt{x+8}-\sqrt{x+3}\right)\left(\sqrt{x^2+11x+24}+1\right)=5\)
Giúp mình nhanh nha. Xin cảm ơn.
Giải các bất phương trình sau:
a/ \(\sqrt{\left(x-3\right)\left(8-x\right)}+26>-x^2+11x\)
b/ \(\left(x+1\right)\left(x+4\right)< 5\sqrt{x^2+5x+28}\)
GIÚP MÌNH VỚI Ạ!!!
Giải Phương Trình:
\(\left(\sqrt{x+8}-\sqrt{x+3}\right)\left(\sqrt{x^2+11x+24}+1\right)=5\)
Điều kiện: x\(\ge\) -3
PT <=> \(\left(\sqrt{x+8}+\sqrt{x+3}\right)\left(\sqrt{x+8}-\sqrt{x+3}\right)\left(\sqrt{x^2+11x+24}+1\right)=5\left(\sqrt{x+8}+\sqrt{x+3}\right)\)
<=> \(\left(x+8-x-3\right)\left(\sqrt{x^2+11x+24}+1\right)=5\left(\sqrt{x+8}+\sqrt{x+3}\right)\)
<=> \(\sqrt{\left(x+3\right)\left(x+8\right)}+1=\sqrt{x+8}+\sqrt{x+3}\)
<=> \(\left(\sqrt{\left(x+3\right)\left(x+8\right)}-\sqrt{x+8}\right)+\left(1-\sqrt{x+3}\right)=0\)
<=> \(\left(1-\sqrt{x+8}\right).\left(1-\sqrt{x+3}\right)=0\)
<=> \(\sqrt{x+8}=1\) hoặc \(\sqrt{x+3}=1\)
<=> x+ 8 = 1 hoặc x + 3 = 1
<=> x = -7 hoặc x = - 2
Đối chiếu Đk => x = - 2 là nghiệm của PT
Giúp mình với ạ . Cảm ơn nhiều .
1)Giải hệ phương trình : \(\left\{{}\begin{matrix}\sqrt{2x-3}-\sqrt{y}\text{=}2x-6\\x^3+y^3+7xy\left(x+y\right)\text{=}8xy.\sqrt{2\left(x^2+y^2\right)}\end{matrix}\right.\)
2) Giải phương trình : \(\dfrac{2\sqrt{x}}{x-1}.x+6+\sqrt{x+2}\text{=}\sqrt{2-x}+3\sqrt{4-x^2}\)
1) đkxđ \(\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\y\ge0\end{matrix}\right.\)
Xét biểu thức \(P=x^3+y^3+7xy\left(x+y\right)\)
\(P=\left(x+y\right)^3+4xy\left(x+y\right)\)
\(P\ge4\sqrt{xy}\left(x+y\right)^2\)
Ta sẽ chứng minh \(4\sqrt{xy}\left(x+y\right)^2\ge8xy\sqrt{2\left(x^2+y^2\right)}\) (*)
Thật vậy, (*)
\(\Leftrightarrow\left(x+y\right)^2\ge2\sqrt{2xy\left(x^2+y^2\right)}\)
\(\Leftrightarrow\left(x+y\right)^4\ge8xy\left(x^2+y^2\right)\)
\(\Leftrightarrow x^4+y^4+6x^2y^2\ge4xy\left(x^2+y^2\right)\) (**)
Áp dụng BĐT Cô-si, ta được:
VT(**) \(=\left(x^2+y^2\right)^2+4x^2y^2\ge4xy\left(x^2+y^2\right)\)\(=\) VP(**)
Vậy (**) đúng \(\Rightarrowđpcm\). Do đó, để đẳng thức xảy ra thì \(x=y\).
Thế vào pt đầu tiên, ta được \(\sqrt{2x-3}-\sqrt{x}=2x-6\)
\(\Leftrightarrow\dfrac{x-3}{\sqrt{2x-3}+\sqrt{x}}=2\left(x-3\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}=2\end{matrix}\right.\)
Rõ ràng với \(x\ge\dfrac{3}{2}\) thì \(\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}\le\dfrac{1}{\sqrt{\dfrac{2.3}{2}-3}+\sqrt{\dfrac{3}{2}}}< 2\) nên ta chỉ xét TH \(x=3\Rightarrow y=3\) (nhận)
Vậy hệ pt đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(3;3\right)\)
Giải phương trình:
\(11\sqrt{5-x}+8\sqrt{2x-1}=24+3\sqrt{\left(5-x\right)\left(2x-1\right)}\)
\(\sqrt{x+3}+2\sqrt{x}=2+\sqrt{x\left(x+3\right)}\)
Tham khảo:
1) Giải phương trình : \(11\sqrt{5-x}+8\sqrt{2x-1}=24+3\sqrt{\left(5-x\right)\left(2x-1\right)}\) - Hoc24
\(\sqrt{x+3}+2\sqrt{x}=2+\sqrt{x\left(x+3\right)}\left(đk:x\ge0\right)\)
\(\Leftrightarrow x+3+4x+4\sqrt{x\left(x+3\right)}=4+x\left(x+3\right)+4\sqrt{x\left(x+3\right)}\)
\(\Leftrightarrow5x+3=4+x^2+3x\)
\(\Leftrightarrow x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\left(tm\right)\)
giải phương trình:
\(\left(\sqrt{x+8}-\sqrt{x+3}\right)\left(\sqrt{x^2+11x+24}+1\right)=5\)
Dat \(\sqrt{x+8}=a,\sqrt{x+3}=b\)
=> a.b=\(\sqrt{x^2+11x+24},a^2-b^2=5\)
pt<=> (a-b)(ab+1)=a2-b2
=> (a-b)(ab+1)=(a-b)(a+b)
=> (a-b)(ab+1)-(a-b)(a+b)=0
=> (a-b)(ab+1-a-b)=0
=> (a-b)[a(b-1)-(b-1)]=0
=> (a-b)(a-1)(b-1)=0
=> \(\left[{}\begin{matrix}a=b\\a=1\\b=1\end{matrix}\right.\)
Voi a=b thi : x+8=x+3
=> pt vo nghiem
Voi a=1 thi x+8=1 => x=-7
Voi b=1 thi x+3=1 => x=-2
giải phương trình :
a, \(\sqrt{x+1}+x+3=\sqrt{1-x}+3\sqrt{1-x^2}\)
b,\(\left(2x-3\right)\sqrt{3+x}+2x\sqrt{3-x}=6x-8+\sqrt{9-x^2}\)
c, \(2x^2-5x+22=5\sqrt{x^3-11x +20}\)
d, \(x^3-3x^2+2\sqrt{\left(x+2\right)^3}=6x\)
Gấp lắm . Giúp mình cảm ơn ạ
Bài 1
\(2\sqrt{\left(1+\sqrt{3}\right)^{ }3}-\sqrt{\left(2\sqrt{3}-3\right)^2}\)
\(\left(1+\sqrt{3}-\sqrt{5}\right).\left(1+\sqrt{3}+\sqrt{5}\right)\)
\(\left(\sqrt[]{\dfrac{8}{3}}-\sqrt{5}\right)x\sqrt{6}\)
\(\left(5+4\sqrt{2}\right).\left(3+2\sqrt{1}+\sqrt{2}\right).\left(3-2\sqrt{1}+2\right)\)
\(\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)
e) Ta có: \(\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)
\(=\sqrt{2}+1-\sqrt{2}+1\)
=2
1, Chứng minh bất đẳng thức:
\(a+\sqrt{a^2-2a+5}+\sqrt{a-1}\ge3\forall a\ge1\)
2, Giải phương trình:
\(x\left(x^2-3x+3\right)+\sqrt{x+3}=3\)
Mong mọi người giúp mình với ạ!! Mình cảm ơn nhiều!!
Bài 1:
Vì $a\geq 1$ nên:
\(a+\sqrt{a^2-2a+5}+\sqrt{a-1}=a+\sqrt{(a-1)^2+4}+\sqrt{a-1}\)
\(\geq 1+\sqrt{4}+0=3\)
Ta có đpcm
Dấu "=" xảy ra khi $a=1$
Bài 2:
ĐKXĐ: x\geq -3$
Xét hàm:
\(f(x)=x(x^2-3x+3)+\sqrt{x+3}-3\)
\(f'(x)=3x^2-6x+3+\frac{1}{2\sqrt{x+3}}=3(x-1)^2+\frac{1}{2\sqrt{x+3}}>0, \forall x\geq -3\)
Do đó $f(x)$ đồng biến trên TXĐ
\(\Rightarrow f(x)=0\) có nghiệm duy nhất
Dễ thấy pt có nghiệm $x=1$ nên đây chính là nghiệm duy nhất.
Giải các phương trình sau:
a \(x^2-11=0\)
b \(x^2-12x+52=0\)
c \(x^2-3x-28=0\)
d \(x^2-11x+38=0\)
e \(6x^2+71x+175=0\)
f \(x^2-\left(\sqrt{2}+\sqrt{8}\right)x+4=0\)
g\(\left(1+\sqrt{3}\right)x^2-\left(2\sqrt{3}+1\right)x+\sqrt{3}=0\)
a.
$x^2-11=0$
$\Leftrightarrow x^2=11$
$\Leftrightarrow x=\pm \sqrt{11}$
b. $x^2-12x+52=0$
$\Leftrightarrow (x^2-12x+36)+16=0$
$\Leftrightarrow (x-6)^2=-16< 0$ (vô lý)
Vậy pt vô nghiệm.
c.
$x^2-3x-28=0$
$\Leftrightarrow x^2+4x-7x-28=0$
$\Leftrightarrow x(x+4)-7(x+4)=0$
$\Leftrightarrow (x+4)(x-7)=0$
$\Leftrightarrow x+4=0$ hoặc $x-7=0$
$\Leftrightarrow x=-4$ hoặc $x=7$
d.
$x^2-11x+38=0$
$\Leftrightarrow (x^2-11x+5,5^2)+7,75=0$
$\Leftrightarrow (x-5,5)^2=-7,75< 0$ (vô lý)
Vậy pt vô nghiệm
e.
$6x^2+71x+175=0$
$\Leftrightarrow 6x^2+21x+50x+175=0$
$\Leftrightarrow 3x(2x+7)+25(2x+7)=0$
$\Leftrightarrow (3x+25)(2x+7)=0$
$\Leftrightarrow 3x+25=0$ hoặc $2x+7=0$
$\Leftrightarrow x=-\frac{25}{3}$ hoặc $x=-\frac{7}{2}$
f.
$x^2-(\sqrt{2}+\sqrt{8})x+4=0$
$\Leftrightarrow x^2-\sqrt{2}x-2\sqrt{2}x+4=0$
$\Leftrightarrow x(x-\sqrt{2})-2\sqrt{2}(x-\sqrt{2})=0$
$\Leftrightarrow (x-\sqrt{2})(x-2\sqrt{2})=0$
$\Leftrightarrow x-\sqrt{2}=0$ hoặc $x-2\sqrt{2}=0$
$\Leftrightarrow x=\sqrt{2}$ hoặc $x=2\sqrt{2}$
g.
$(1+\sqrt{3})x^2-(2\sqrt{3}+1)x+\sqrt{3}=0$
$\Leftrightarrow (1+\sqrt{3})x^2-(1+\sqrt{3})x-(\sqrt{3}x-\sqrt{3})=0$
$\Leftrightarrow (1+\sqrt{3})x(x-1)-\sqrt{3}(x-1)=0$
$\Leftrightarrow (x-1)[(1+\sqrt{3})x-\sqrt{3}]=0$
$\Leftrightarrow x-1=0$ hoặc $(1+\sqrt{3})x-\sqrt{3}=0$
$\Leftrightarrow x=1$ hoặc $x=\frac{3-\sqrt{3}}{2}$