Tính :\(\left(16^3-64^2\right):8^3\)
Tính nhanh \(4\cdot\left(3^2+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\left(3^{64}+1\right)\)
Thực hiện phép tính :
a) \(\left(7.3^5-3^4+3^6\right):3^4\)
b) \(\left(16^3-64^2\right):8^3\)
Bài 44: (SBT/12):
a. (7.35 - 34 + 36) : 34
= (7.35 : 34) + (-34 : 34) + (36 : 34)
= 7 . 3 - 1 + 32
= 21 - 1 + 9
= 29
b. (163 - 642) : 83
= [(2.8)3 - (82)2 ] : 83
= (23 . 83 - 84) : 83
= ( 23 . 83 : 83) + (-84 : 83)
= 23 - 8
= 8 - 8
= 0
a) \(\left(7.3^5-3^4+3^6\right):3^4\)
\(=7.3^5:3^4-3^4:3^4+3^6:3^4\)
\(=7.3^{5-4}-3^{4-4}+3^{6-4}\)
\(=7.3^1-3^0+3^2\)
\(=7.3-1+9\)
\(=21-1+9\)
\(=20+9\)
\(=29\)
b) \(\left(16^3-64^2\right):8^3\)
\(=\left[\left(2^4\right)^3-\left(2^6\right)^2\right]:\left(2^3\right)^3\)
\(=\left(2^{4.3}-2^{6.3}\right):2^{3.3}\)
\(=\left(2^{12}-2^{12}\right):2^9\)
\(=2^{12-9}-2^{12-9}\)
\(=2^3-2^3\)
\(=8-8\)
\(=0\)
\(A=\left(2\dfrac{1}{3}+3\dfrac{1}{2}\right):\left(-4\dfrac{1}{6}+3\dfrac{1}{7}\right)+7\dfrac{1}{2}\)
\(B=4\dfrac{25}{16}+25\cdot\left(\dfrac{9}{16}:\dfrac{125}{64}\right):\left(-\dfrac{27}{8}\right)\)
giải hộ mk nhanh nhanh nhoa ☺
BT7: Tính
\(3,C=\left(5-1\right)\left(5+1\right)\left(5^2+1\right)\left(5^4+1\right)...\left(5^{16}+1\right)\)
\(4,D=15\left(4^2+1\right)\left(4^4+1\right)...\left(4^{64}+1\right)\)
\(5,E=24\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)...\left(5^{128}+1\right)+\left(5^{256}-1\right)\)
3: =(5^2-1)(5^2+1)(5^4+1)(5^8+1)(5^16+1)
=(5^4-1)(5^4+1)(5^8+1)(5^16+1)
=(5^8-1)(5^8+1)(5^16+1)
=(5^16-1)(5^16+1)
=5^32-1
4:
D=(4^4-1)(4^4+1)(4^8+1)*....*(4^64+1)
=(4^8-1)(4^8+1)*...*(4^64+1)
=...
=4^128-1
5: =(5^2-1)(5^2+1)(5^4+1)*...*(5^128+1)+(5^256-1)
=(5^4-1)(5^4+1)*...*(5^128+1)+5^256-1
=5^256-1+5^256-1
=2*5^256-2
3, \(C=\left(5-1\right)\left(5+1\right)\left(5^2+1\right)\left(5^4+1\right)....\left(5^{16}+1\right)\)
\(C=\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)....\left(5^{16}+1\right)\)
\(C=\left(5^4-1\right)\left(5^4+1\right)....\left(5^{16}+1\right)\)
\(C=\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(C=\left(5^{16}-1\right)\left(5^{16}+1\right)\)
\(C=5^{32}-1\)
4, \(D=15\left(4^2+1\right)\left(4^4+1\right)...\left(4^{64}+1\right)\)
\(D=\left(4^2-1\right)\left(4^2+1\right)\left(4^4+1\right)...\left(4^{64}+1\right)\)
\(D=\left(4^4-1\right)\left(4^4+1\right)...\left(4^{64}+1\right)\)
\(D=\left(4^8-1\right)\left(4^8+1\right)...\left(4^{64}+1\right)\)
\(D=\left(4^{16}-1\right)\left(4^{16}+1\right)...\left(4^{64}+1\right)\)
\(D=\left(4^{32}-1\right)\left(4^{32}+1\right)\left(4^{64}+1\right)\)
\(D=\left(4^{64}-1\right)\left(4^{64}+1\right)\)
\(D=4^{128}-1\)
5, \(E=24\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)...\left(5^{256}+1\right)\)
\(E=\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)...\left(5^{128}+1\right)\left(5^{256}+1\right)\)
\(E=\left(5^4-1\right)\left(5^4+1\right)....\left(5^{256}+1\right)\)
....
\(E=\left(5^{128}-1\right)\left(5^{128}+1\right)\left(5^{256}+1\right)\)
\(E=\left(5^{256}-1\right)\left(5^{256}+1\right)\)
\(E=5^{512}-1\)
Giúp mik với
Tính
a)\(\frac{2}{3}\sqrt{81}-\left(\frac{-3}{4}\right).\sqrt{\frac{9}{64}}+\left(\frac{\sqrt{2}}{3}\right)^2\)
b)\(\left(-\sqrt{\frac{5}{4}}\right)^2-\sqrt{\frac{9}{4}}:\left(-4,5\right)-\sqrt{\frac{25}{16}}.\sqrt{\frac{64}{9}}\)
c)\(-2^4-\left(-2\right)^2:\left(-\sqrt{\frac{16}{121}}\right)-\left(-\sqrt{\frac{2}{3}}\right)^2:\left(-2\frac{2}{3}\right)\)
\(\sqrt{64}+3.\sqrt{ \left(\frac{1}{2}\right)^0}-\frac{\sqrt{16}}{4}+\left(\sqrt{\left(-4\right)^2}:\frac{1}{2}\right).8\)
\(\sqrt{64}+3.\sqrt{\left(\frac{1}{2}\right)^0}-\frac{\sqrt{16}}{4}+\left(\sqrt{\left(-4\right)^2:\frac{1}{2}}\right).8\)
= \(8+3.1-\frac{4}{4}+\left(\sqrt{16:\frac{1}{2}}\right).8\)
=\(8+3-1+\left(\sqrt{16.2}\right).8\)
=\(8+3-1+\left(\sqrt{32}\right).8\)
=\(11-1+\left(\sqrt{32}\right).8\)
= \(10+5,65685424949.8\)
= \(10+45,2548339959\)
=\(55,2548339959\)
Mình ko biết là có đúng không í
vì mình thấy đề bài có gì sai ý!!!
\(\sqrt{64}+3\sqrt{\left(\frac{1}{2}\right)^0}-\frac{\sqrt{16}}{4}+\left(\sqrt{\left(-4\right)^2}:\frac{1}{2}\right).8\)
\(=\sqrt{8^2}+3\sqrt{1}-\frac{\sqrt{4^2}}{4}+\left(\sqrt{16}:\frac{1}{2}\right).8\)
\(=8+3-\frac{4}{4}+\left(\sqrt{4^2}:\frac{1}{2}\right).8\)
\(=11-1+\left(4.2\right).8\)
\(=10+8.8=10+64=74\)
cái này bấm máy tính casio hoặc deli.... là ra ngay hoi !!!
\(\sqrt{8}+3.\sqrt{\left(\frac{1}{2}\right)^0}-\frac{\sqrt{16}}{4}+\left(\sqrt{\left(-4\right)^2}:\frac{1}{2}\right).8\)
\(=8+3-\frac{4}{4}+\left(4:\frac{1}{2}\right).8\)
\(=10+8.8\)
\(=74\)
Tính \(C=\left(2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
Phải là (2+1)(2²+1)(2⁴+1)...(2³²+1)- 2^64
(2+1)(2²+1)(2⁴+1)...(2³²+1)
=(2-1)(2+1)(2²+1)(2⁴+1)...(2³²+1)
=(2²-1)(2²+1)(2⁴+1)...(2³²+1)
=(2⁴-1)(2⁴+1)...(2³²+1)=…=2^64-1
Vậy C=-1
Tính :
a) \(\left(\dfrac{1}{16}\right)^{-\dfrac{3}{4}}+810000^{0,25}-\left(7\dfrac{19}{32}\right)^{\dfrac{1}{5}}\)
b) \(\left(0,001\right)^{-\dfrac{1}{3}}-2^{-2}.64^{\dfrac{2}{3}}-8^{-1\dfrac{1}{3}}\)
c) \(27^{\dfrac{2}{3}}-\left(-2\right)^{-2}+\left(3\dfrac{3}{8}\right)^{-\dfrac{1}{3}}\)
d) \(\left(-0,5\right)^{-4}-625^{0,25}-\left(2\dfrac{1}{4}\right)^{-1\dfrac{1}{2}}\)
a) \(\left(\dfrac{1}{16}\right)^{-\dfrac{3}{4}}+810000^{0.25}-\left(7\dfrac{19}{32}\right)^{\dfrac{1}{5}}\)
\(=\left(\dfrac{1}{2}\right)^{4.\left(-\dfrac{3}{4}\right)}+\left(30\right)^{4.0,25}-\left(\dfrac{243}{32}\right)^{\dfrac{1}{5}}\)
\(=\left(\dfrac{1}{2}\right)^{-3}+30-\left(\dfrac{3}{2}\right)^{5.\dfrac{1}{5}}\)
\(=2^3+30-\dfrac{3}{2}\)
\(=36,5\)
b) \(=\left(0,1\right)^{3.\left(-\dfrac{1}{3}\right)}-2^{-2}.2^{6.\dfrac{2}{3}}-\left[\left(2\right)^3\right]^{-\dfrac{4}{3}}\)
\(=0,1^{-1}-2^2-2^{-4}\)
\(=10-4-\dfrac{1}{16}\)
\(=\dfrac{95}{16}\)
c) \(=3^{3.\dfrac{2}{3}}-\dfrac{1}{\left(-2\right)^2}+\left(\dfrac{27}{8}\right)^{-\dfrac{1}{3}}\)
\(=9-\dfrac{1}{4}+\left(\dfrac{3}{2}\right)^{3.\dfrac{-1}{3}}\)
\(=9-\dfrac{1}{4}+\left(\dfrac{3}{2}\right)^{-1}\)
\(=9-\dfrac{1}{4}+\dfrac{2}{3}\)
\(=\dfrac{113}{12}\)
Bài 1: Tính
\(A=3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)\)
Bài 2 : Chứng minh biểu thức sau viết được dưới dạng tổng của 2 bình phương
\(x^2+2\left(x+1\right)^2+3\left(x+2\right)^2+4\left(x+3\right)^2\)