Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trí Phạm
Xem chi tiết
Công chúa thủy tề
Xem chi tiết
Nguyễn Phúc Nguyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 6 2022 lúc 22:56

Bài 2: 

Ta có: AM=1/2BC

nên AM=BM=CM

Xét ΔMAB có MA=MB

nên ΔMAB cân tại M

=>\(\widehat{MAB}=\widehat{B}\)

Xét ΔMAC có MA=MC

nên ΔMAC cân tại M

=>\(\widehat{MAC}=\widehat{C}\)

Xét ΔBAC có \(\widehat{BAC}+\widehat{B}+\widehat{C}=180^0\)

\(\Leftrightarrow\widehat{MAB}+\widehat{B}+\widehat{MAC}+\widehat{C}=180^0\)

\(\Leftrightarrow2\cdot\left(\widehat{MAB}+\widehat{MAC}\right)=180^0\)

=>\(\widehat{BAC}=90^0\)

hay ΔABC vuông tại A

Trí Phạm
Xem chi tiết
Phu Dang Gia
17 tháng 8 2020 lúc 19:37

a)Tam giác ABD vuông tại D có BD = AB.cos B

Tam giác BCE vuông tại E có CE=BC.cos C

Tam giác CÀ vuông tại F có AF=CA.cos A

Suy ra : \(AF.BD.CE=AB.BC.CA.cosA.cosB.cosC\)

Khách vãng lai đã xóa
Phu Dang Gia
17 tháng 8 2020 lúc 19:50

b) Xét \(\Delta ABE\)và \(\Delta ACF\) có :

\(\widehat{AEB}=\widehat{AFC}\left(=90^o\right)\)

\(\widehat{BAE}=\widehat{CAF}\left(gt\right)\)

nên \(\Delta ABE\) đồng dạng \(\Delta ACF\)(gg)

\(\Rightarrow\frac{AE}{AB}=\frac{AF}{AC}\)(1)

Lại có \(\widehat{FAE}=\widehat{CAB}\)(2)

Từ (1) và (2) suy ra \(\Delta AFE\)đồng dạng\(\Delta ACB\)(cgc)

\(\Rightarrow\frac{S_{AFE}}{S_{ACB}}=\frac{AE^2}{AB^2}=\frac{S_{AFE}}{144}\)(*)

\(\Delta ABE\)vuông tại E có\(\widehat{BAE}=60^0\Rightarrow\widehat{ABE}=30^o\Rightarrow\frac{AE}{AB}=\frac{1}{2}\Rightarrow\frac{AE^2}{AB^2}=\frac{1}{4}\)

Thay vào (*) ta có \(\frac{S_{AFE}}{144}=\frac{1}{4}\Rightarrow S_{AFE}=36\)

Khách vãng lai đã xóa
Nguyen Phuc Duy
Xem chi tiết
Phùng Minh Quân
14 tháng 6 2019 lúc 10:50

A B C D E

\(\cos^2\widehat{A}=\frac{AE^2}{AC^2}=\frac{AD^2}{AB^2}\)

Xét tam giác ADE và tam giác ABC có : 

\(\frac{AD}{AB}=\frac{AE}{AC}\) \(\left(=\cos\widehat{A}\right)\)

\(\widehat{A}\) là góc chung 

Do đó : \(\Delta ADE~\Delta ABC\left(c-g-c\right)\)

Mà tỉ số diện tích của hai tam giác đồng dạng bằng bình phương tỉ số đồng dạng nên 

\(\frac{S_{ADE}}{S_{ABC}}=\left(\frac{AD}{AB}\right)^2=\left(\frac{AE}{AC}\right)^2=\cos^2\widehat{A}\)\(\Rightarrow\)\(S_{ADE}=S_{ABC}.\cos^2\widehat{A}\) ( đpcm ) 

làm tạm 1 câu :v 

Phùng Minh Quân
14 tháng 6 2019 lúc 11:14

\(S_{ADE}+S_{BCDE}=S_{ABC}.1=S_{ABC}\left(\sin^2\widehat{A}+\cos^2\widehat{A}\right)\)

\(\Rightarrow\)\(S_{ADE}+S_{BCDE}=S_{ABC}.\sin^2\widehat{A}+S_{ABC}.\cos^2\widehat{A}\)

\(\Leftrightarrow\)\(S_{BCDE}=S_{ABC}.\sin^2\widehat{A}\) ( do \(S_{ADE}=S_{ABC}.\cos^2\widehat{A}\) ) 

Phùng Minh Quân
14 tháng 6 2019 lúc 13:41

à anh bỏ cái dòng đầu \(\cos^2\widehat{A}=\frac{AE^2}{AC^2}=\frac{AD^2}{AB^2}\) ở câu a) đi nhé, quên xoá >_< 

Ko đủ trình
Xem chi tiết
Kiệt Nguyễn
27 tháng 9 2020 lúc 19:13

Ta có: SAED = 1/14SABC => ED = 1/14BC

SAFD = 7/50SABC => FD = 7/50BC

=> EC = ED + DC = 1/14BC + 1/2BC = 4/7BC và EB = BC - EC = 3/7BC

=> EB/EC = 3/4 => AB/AC = 3/4 (= EB/EC, theo tính chất đường phân giác trong tam giác)

Hơn nữa SABF = SABD - SAFD = 1/2SABC - 7/50SABC = 9/25SABC

SACF = SACD + SAFD = 1/2SABC + 7/50SABC = 16/25SABC

=> SABF/SACF = 9/16 => FM/FN = 3/4 (với M, N là các chân đường cao hạ từ F xuống AB và AC)

Gọi I, J lần lượt là trung điểm các cạnh AB, AC

Các tam giác ∆ABF và ∆AFC vuông tại F => FI = 1/2AB, FJ = 1/2AC => FI/FJ = AB/AC = 3/4

Từ đó FM/FN = FI/FJ => ∆MIF ~ ∆NJF (ch - cgv) => ^MIF = ^NJF

Mà ∆IBF cân tại I, ∆AJF cân tại J

=> ^IFB = ^FAJ            (1)

∆IAF cân tại I => ^IFA = ^IAF                   (2)

Từ (1) và (2) suy ra ^IAF + ^FAJ = ^IFA + ^IFB = 900 => ^BAC = 900.

Khách vãng lai đã xóa
Nhan Thanh
Xem chi tiết
Cậu Hạc
Xem chi tiết
Nguyễn Thị Ngọc Mai
Xem chi tiết
Vũ Tiến Manh
15 tháng 10 2019 lúc 13:57

H F D E A B C

a) \(\widehat{BFC}=\widehat{BEC}=90o\) => tứ giác BFEC nội tiếp => \(\widehat{AEF}=\widehat{ABC;}\widehat{AFE}=\widehat{ABC}\)=> \(\Delta AEF~\Delta ABC\)

SAEF = \(\frac{1}{2}AE.AF.sinA\); SABC = \(\frac{1}{2}AB.AC.sinA\)=>\(\frac{S_{AEF}}{S_{ABC}}=\frac{AE.AF}{AB.AC}\)=cos2A   (cosA = \(\frac{AE}{AB}=\frac{AF}{AC}\))

b) làm tương tự câu a ta được SBFD=cos2B.SABC; SCED=cos2C.SABC

=> SDEF =SABC-SAEF-SBFD-SCED = (1-cos2A-cos2B-cos2C)SABC