Cho hình chóp \(S_{ABC}\) có mặt bên \(S_{BC}\) là \(\Delta\) đều cạnh a , \(S_{A\perp\left(ABC\right)}\) biết \(\widehat{BAC}=120^o\)
Tính \(V_{S_{ABC}}\) theo a .
Cho ΔABC có 3 góc nhọn, ba đường cao AD, BE, CF.
a) CM: \(AF.BD.CE=AB.BC.CA.\cos A.\cos B.\cos C\)
b) Giả sử: \(\widehat{BAC}=60^o\), \(S_{ABC}=144\). Tính \(S_{AEF}\)
c) CM: \(S_{DEF}=\left[1-cos^2A-cos^2B-cos^2C\right].S_{ABC}\)
Cho \(\Delta ABC\) có \(\widehat{B}=120\) độ , có BC = 12cm, AB = 6cm. Đường phân giác BD.
a, Tính độ dài BD
b, Tính tỉ số \(\frac{S_{ABD}}{S_{ABC}}\)
c, Tính \(S_{ABD}?\)
Bài 1: Cho tam giác ABC có AD, BE, CF cắt tại O. CMR: \(S_{\Delta AOE}=S_{\Delta DEC}=S_{\Delta OCD}=S_{\Delta OBD}=S_{\Delta OBF}=S_{\Delta OFA}=\dfrac{1}{6}S_{\Delta ABC}\)
Bài 2: Cho tam giác ABC có \(AM=\dfrac{1}{2}BC\). CMR: tam giác ABC vuông tại A.
Bài 2:
Ta có: AM=1/2BC
nên AM=BM=CM
Xét ΔMAB có MA=MB
nên ΔMAB cân tại M
=>\(\widehat{MAB}=\widehat{B}\)
Xét ΔMAC có MA=MC
nên ΔMAC cân tại M
=>\(\widehat{MAC}=\widehat{C}\)
Xét ΔBAC có \(\widehat{BAC}+\widehat{B}+\widehat{C}=180^0\)
\(\Leftrightarrow\widehat{MAB}+\widehat{B}+\widehat{MAC}+\widehat{C}=180^0\)
\(\Leftrightarrow2\cdot\left(\widehat{MAB}+\widehat{MAC}\right)=180^0\)
=>\(\widehat{BAC}=90^0\)
hay ΔABC vuông tại A
Cho ΔABC có 3 góc nhọn, ba đường cao AD, BE, CF.
a) CM: \(AF.BD.CE=AB.BC.CA.\cos A.\cos B.\cos C\)
b) Giả sử: \(\widehat{BAC}=60^o\), \(S_{ABC}=144\). Tính \(S_{AEF}\)
c) CM: \(S_{DEF}=\left[1-cos^2A-cos^2B-cos^2C\right].S_{ABC}\)
a)Tam giác ABD vuông tại D có BD = AB.cos B
Tam giác BCE vuông tại E có CE=BC.cos C
Tam giác CÀ vuông tại F có AF=CA.cos A
Suy ra : \(AF.BD.CE=AB.BC.CA.cosA.cosB.cosC\)
b) Xét \(\Delta ABE\)và \(\Delta ACF\) có :
\(\widehat{AEB}=\widehat{AFC}\left(=90^o\right)\)
\(\widehat{BAE}=\widehat{CAF}\left(gt\right)\)
nên \(\Delta ABE\) đồng dạng \(\Delta ACF\)(gg)
\(\Rightarrow\frac{AE}{AB}=\frac{AF}{AC}\)(1)
Lại có \(\widehat{FAE}=\widehat{CAB}\)(2)
Từ (1) và (2) suy ra \(\Delta AFE\)đồng dạng\(\Delta ACB\)(cgc)
\(\Rightarrow\frac{S_{AFE}}{S_{ACB}}=\frac{AE^2}{AB^2}=\frac{S_{AFE}}{144}\)(*)
\(\Delta ABE\)vuông tại E có\(\widehat{BAE}=60^0\Rightarrow\widehat{ABE}=30^o\Rightarrow\frac{AE}{AB}=\frac{1}{2}\Rightarrow\frac{AE^2}{AB^2}=\frac{1}{4}\)
Thay vào (*) ta có \(\frac{S_{AFE}}{144}=\frac{1}{4}\Rightarrow S_{AFE}=36\)
CHo \(\Delta ABC\) nhọn , 2 đường cao BD và CE . Chứng minh :
a) \(S_{ADE}=S_{ABC}.\cos^2\widehat{A}\)
b) \(S_{BCDE}=S_{ABC}.\sin^2\widehat{A}\)
\(\cos^2\widehat{A}=\frac{AE^2}{AC^2}=\frac{AD^2}{AB^2}\)
Xét tam giác ADE và tam giác ABC có :
\(\frac{AD}{AB}=\frac{AE}{AC}\) \(\left(=\cos\widehat{A}\right)\)
\(\widehat{A}\) là góc chung
Do đó : \(\Delta ADE~\Delta ABC\left(c-g-c\right)\)
Mà tỉ số diện tích của hai tam giác đồng dạng bằng bình phương tỉ số đồng dạng nên
\(\frac{S_{ADE}}{S_{ABC}}=\left(\frac{AD}{AB}\right)^2=\left(\frac{AE}{AC}\right)^2=\cos^2\widehat{A}\)\(\Rightarrow\)\(S_{ADE}=S_{ABC}.\cos^2\widehat{A}\) ( đpcm )
làm tạm 1 câu :v
\(S_{ADE}+S_{BCDE}=S_{ABC}.1=S_{ABC}\left(\sin^2\widehat{A}+\cos^2\widehat{A}\right)\)
\(\Rightarrow\)\(S_{ADE}+S_{BCDE}=S_{ABC}.\sin^2\widehat{A}+S_{ABC}.\cos^2\widehat{A}\)
\(\Leftrightarrow\)\(S_{BCDE}=S_{ABC}.\sin^2\widehat{A}\) ( do \(S_{ADE}=S_{ABC}.\cos^2\widehat{A}\) )
à anh bỏ cái dòng đầu \(\cos^2\widehat{A}=\frac{AE^2}{AC^2}=\frac{AD^2}{AB^2}\) ở câu a) đi nhé, quên xoá >_<
Cho tam giác ABC có \(\widehat{B}\) và \(\widehat{C}\)nhọn, đường cao AF, trung tuyến AD, phân giác AE. Biết\(S_{AED}=\frac{1}{14}S_{ABC};S_{AFD}=\frac{7}{50}S_{ABC}\). Tính \(\widehat{BAC}\).
Ta có: SAED = 1/14SABC => ED = 1/14BC
SAFD = 7/50SABC => FD = 7/50BC
=> EC = ED + DC = 1/14BC + 1/2BC = 4/7BC và EB = BC - EC = 3/7BC
=> EB/EC = 3/4 => AB/AC = 3/4 (= EB/EC, theo tính chất đường phân giác trong tam giác)
Hơn nữa SABF = SABD - SAFD = 1/2SABC - 7/50SABC = 9/25SABC
SACF = SACD + SAFD = 1/2SABC + 7/50SABC = 16/25SABC
=> SABF/SACF = 9/16 => FM/FN = 3/4 (với M, N là các chân đường cao hạ từ F xuống AB và AC)
Gọi I, J lần lượt là trung điểm các cạnh AB, AC
Các tam giác ∆ABF và ∆AFC vuông tại F => FI = 1/2AB, FJ = 1/2AC => FI/FJ = AB/AC = 3/4
Từ đó FM/FN = FI/FJ => ∆MIF ~ ∆NJF (ch - cgv) => ^MIF = ^NJF
Mà ∆IBF cân tại I, ∆AJF cân tại J
=> ^IFB = ^FAJ (1)
∆IAF cân tại I => ^IFA = ^IAF (2)
Từ (1) và (2) suy ra ^IAF + ^FAJ = ^IFA + ^IFB = 900 => ^BAC = 900.
Cho △nhọn ABC có ∠A= 2∠B. Kẻ đường phân giác AD và đường cao AH
a) CMR AC2=DC.BC
b) CMR BC2-AC2=AB.AC
c) CMR S△ABC=\(\dfrac{AH^2}{2\sin\text{∠}BAC}\)
d) Biết ∠BAC=80°. Tính \(\dfrac{S_{\Delta ADH}}{S_{\Delta ABC}}\) phụ thuốc vào tỉ số lượng giác của các gọc nhọn
Giúp em câu c,d với ạ
\(\Delta ABC\) nhọn có : \(AH\perp BC;BI\perp AC;CK\perp AB\).Chứng minh rằng: \(S_{HIK}=\left(1-\cos^2A-\cos^2B-\cos^2C\right)\cdot S_{ABC}\)
Cho tam giác ABC có 3 góc nhọn với đường cao AD,BE,CF cắt nhau tại H
a, Cmr : \(\Delta AEF\sim\Delta ABC;\frac{S_{AEF}}{S_{ABC}}=\cos^2A\)
b, Cmr : \(S_{DEF}=\left(1-\cos^2A-\cos^2B-\cos^2C\right).S_{ABC}\)
c, Cmr :\(\frac{HA}{BC}+\frac{HB}{AC}+\frac{HC}{AB}\ge3\)
a) \(\widehat{BFC}=\widehat{BEC}=90o\) => tứ giác BFEC nội tiếp => \(\widehat{AEF}=\widehat{ABC;}\widehat{AFE}=\widehat{ABC}\)=> \(\Delta AEF~\Delta ABC\)
SAEF = \(\frac{1}{2}AE.AF.sinA\); SABC = \(\frac{1}{2}AB.AC.sinA\)=>\(\frac{S_{AEF}}{S_{ABC}}=\frac{AE.AF}{AB.AC}\)=cos2A (cosA = \(\frac{AE}{AB}=\frac{AF}{AC}\))
b) làm tương tự câu a ta được SBFD=cos2B.SABC; SCED=cos2C.SABC
=> SDEF =SABC-SAEF-SBFD-SCED = (1-cos2A-cos2B-cos2C)SABC