Cho đường thẳng d xác định bởi y=2x+4 Tìm đường thẳng d' đối xứng với d qua đường thẳng y=2x+1
Cho hàm số y = (m+1)x − 2m+1 (d)
a) Xác định m để đường thẳng (d) đi qua gốc tọa độ.
b) Tìm m để đường thẳng (d) đi qua A(3; 4).Vẽ đồ thị với m vừa tìm được.
c) Tìm tọa độ giao điểm của đường thẳng vừa vẽ với đường thẳng (d’): y = −2x + 4
\(a,\Leftrightarrow A\left(0;0\right)\in\left(d\right)\Leftrightarrow-2m+1=0\Leftrightarrow m=\dfrac{1}{2}\\ b,\Leftrightarrow x=3;y=4\Leftrightarrow3\left(m+1\right)-2m+1=4\\ \Leftrightarrow3m+3-2m+1=4\\ \Leftrightarrow m=0\Leftrightarrow\left(d\right):y=x+1\\ c,\text{PT hoành độ giao điểm: }x+1=-2x+4\Leftrightarrow x=1\Leftrightarrow y=2\Leftrightarrow B\left(1;2\right)\\ \text{Vậy }B\left(1;2\right)\text{ là giao 2 đths}\)
Cho điểm A ( 2;1) . Xác định tọa độ các điểm :
a) B đối xứng với A qua trục tung b) C đối xứng với A qua trục hoành
c) D dối xứng với A qua O d) E đối xứng với A qua đường thẳng d: y = 2x - 1
a: B đối xứng A qua trục tung Oy
=>\(\left\{{}\begin{matrix}x_B=-x_A=-2\\y_B=y_A=1\end{matrix}\right.\)
Vậy: B(-2;1)
b: C đối xứng A qua trục Ox
=>\(\left\{{}\begin{matrix}x_C=x_A=2\\y_C=-y_A=-1\end{matrix}\right.\)
Vậy: C(2;-1)
c: D đối xứng A qua O
=>O là trung điểm của AD
=>\(\left\{{}\begin{matrix}x_A+x_D=0\\y_A+y_D=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_D=-x_A=-2\\y_D=-y_A=-1\end{matrix}\right.\)
Vậy: D(-2;-1)
d: (d): y=2x-1
=>(d): 2x-y-1=0
E đối xứng A qua (d)
=>(d) là đường trung trực của AD
Gọi (d2): ax+by+c=0 là phương trình đường thẳng AD
(d) là trung trực của AD
=>(d) vuông góc (d2) tại trung điểm của AD(1) và (d2) đi qua A(2;1)
(d): 2x-y-1=0
=>(d2): x+2y+c=0
Thay x=2 và y=1 vào (d2), ta được:
\(c+2+2\cdot1=0\)
=>c=-4
=>(d2): x+2y-4=0
Tọa độ giao điểm F của (d) với (d2) là:
\(\left\{{}\begin{matrix}x+2y-4=0\\2x-y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+2y=4\\2x-y=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x+4y=8\\2x-y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5y=7\\x+2y=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{7}{5}\\x=4-2y=4-\dfrac{14}{5}=\dfrac{6}{5}\end{matrix}\right.\)
(1) suy ra F là trung điểm của AE
=>\(\left\{{}\begin{matrix}\dfrac{6}{5}=\dfrac{x_A+x_E}{2}=\dfrac{2+x_E}{2}\\\dfrac{7}{5}=\dfrac{y_A+y_E}{2}=\dfrac{y_E+1}{2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x_E+2=\dfrac{12}{5}\\y_E+1=\dfrac{14}{5}\end{matrix}\right.\Leftrightarrow E\left(\dfrac{2}{5};\dfrac{9}{5}\right)\)
Cho đường thẳng d: 2x + y – 1 = 0. Phương trình đường thẳng d’ đối xứng với d qua gốc tọa độ là:
A. 2x + y + 1 = 0
B.2x – y – 1 = 0
C. 2x – y + 1 = 0
D.–2x – y + 1 = 0
Đáp án A
Sử dụng biểu thức tọa độ x ' = − x y ' = − y , ta có:
2(–x’) + (–y’) – 1 = 0 <=>–2x’ – y’ – 1= 0
phương trình đường thẳng cần tìm: 2x + y +1 =0)
lập phương trình đường thẳng d' đối xứng với đường thẳng d qua Δ
d:x-2y+4=0
Δ:2x+y-2=0
Gọi \(M\) là giao điểm của \(\left(d\right);\left(\Delta\right)\) thì \(M\) có tọa độ là nghiệm của hệ
\(\left\{{}\begin{matrix}x-2y+4=0\\2x+y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\Rightarrow M\left(0;2\right)\)
Lấy \(N\left(-4;0\right)\in\left(d\right),N'\) đối xứng với \(N\) qua \(\left(\Delta\right)\)
\(NN'\perp\left(\Delta\right)\) và \(N\left(-4;0\right)\Rightarrow x-2y+4=0\left(NN'\right)\)
Gọi \(I=\left(NN'\right)\cap\left(\Delta\right)\Rightarrow I\) có tọa độ là nghiệm của hệ
\(\left\{{}\begin{matrix}2x+y-2=0\\x-2y+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\Rightarrow I\left(0;2\right)\Rightarrow I\equiv M\)
\(\Rightarrow\left(d'\right)\equiv\left(d\right)\)
\(\Rightarrow x-2y+4=0\left(d'\right)\)
Bài 1: Lập phương trình đường thẳng d' đối xứng với đường thẳng d qua đường thẳng Δ, với:
a, d: 2x-y+1=0, Δ: 3x-4y+2=0
b, d: x-2y+4=0, Δ: 2x+y-2=0
c, d: x+y-1=0, Δ: x-3y+3=0
d, d: 2x-3y+1=0, Δ: 2x-3y-1=0
Bài 2: Lập phương trình đường thẳng d' đối xứng với đường thẳng d qua điểm I với:
a, d: 2x-y+1=0, I(2;1)
b, d: x-2y+4=0, I(-3;0)
c, d: x+y-1=0, I(0:3)
d, d: 2x-3y+1=0, I trùng O(0;0)
GIÚP EM VỚI Ạ!! EM ĐANG CẦN GẤP LẮM HUHUU T^T EM XIN CẢM ƠN!!!
mỗi bài, mk làm một phần ví dụ cho cậu nhé
nó đối xứng với nhau qua pt đường thẳng đenta,
trường hợp (d) ko cắt (đen ta) hay (d) cắt (đen ta) thì đều làm theo phương pháp sau
lấy 2 điểm bất kì thuộc (d) thì ta có như sau: A(0:1) là điểm thuộc đường thẳng (d)
lấy A' đối xứng với A qua (đen ta)
liên hệ tính chất đối xứng qua đường thẳng thì hiểu là AA' vuông góc (đen ta)
đồng thời giao điểm của AA' với (đen ta) là trung điểm của AA'
dễ dàng tìm đc giao điểm của (đen ta) với (d) là K(-2/5;1/5)
từ pt (đenta) thì dễ dàng =) vecto pháp tuyến của (đenta) =) (3;-4)
vì AA' vuông góc với (đenta) nên =) vectơ pháp tuyến của AA' là (4;-3)
áp véctơ pháp tuyến của AA' vào phương trình tổng quát đc: 4(x-0)-3(y-1)=0 (=) 4x-3y+3=0
gọi I là giao điểm của AA' và (đenta) =) I(-6/7;-1/7)
mà I là trung điểm của AA'
chắc chắn cậu sẽ dễ dàng suy ra điểm A'
mà K và A' thuộc (d') nên dễ dàng =) phương trình của (d')
Cho hai đường thẳng d: 2x- y + 3= 0 và ∆: x+ 3y – 2= 0. Phương trình đường thẳng d’ đối xứng với d qua là:
A. 11x + 13y -2= 0
B.11x -2y = -13
C.13x-11y+3= 0
D.11x-13y+2= 0
Đáp án B
+Giao điểm của d và là nghiệm của hệ
+Lấy M(0; 3) thuộc d. Tìm M’ đối xứng M qua
Viết phương trình đường thẳng đi qua M(0;3) và vuông góc với :
3( x-0) -1( y-3) =0 hay 3x –y+3= 0
+Gọi H là giao điểm của và đường thẳng . Tọa độ H là nghiệm của hệ
+Ta có H là trung điểm của MM’. Từ đó suy ra tọa độ
Viết phương trình đường thẳng d’đi qua 2 điểm A và M’: điểm đi qua A( -1 ;1) , vectơ chỉ phương
=> vectơ pháp tuyến
1. Cho hàm số y = ax + 3 (d)
a/ Xác định a biết (d) đi qua A(1;-1). Vẽ đồ thị với a vừa tìm được..
b/ Xác định a biết đường thẳng (d) song song với đường thẳng y = 2x – 1(d’)
c/ Tìm tọa độ giao diểm của (d) và (d’) với a tìm được ở câu a bằng phép tính
a: Thay x=1 và y=-1 vào (d), ta được:
a+3=-1
hay a=-4
Cho đường thẳng d : -3x+y-1=0 và điểm I(-2;4).
a. Viết pt đường thẳng d1 đối xứng với đường thẳng d2 : 2x+y=0 qua d
b. Viết pt đường thẳng d3 sao cho khoảng cách giữa d và d3 bằng 6
1. cho đường thẳng \(d:2x-y+3=0\) và M(8;2). Tọa độ của điểm M' đối xứng với m qua d??
2. Cho hai đường thẳng \(d:2x-y+3=0\) và \(\Delta:x+3y-2=0\) phương trình đường thẳng d' đối xứng với d qua \(\Delta\) ??